31 research outputs found

    A Reservoir of Moraxella catarrhalis in Human Pharyngeal Lymphoid Tissue

    Get PDF
    Background. Early exposure of infants and long-term immunity suggest that colonization with Moraxella catarrhalis is more frequent than is determined by routine culture. We characterized a reservoir of M. catarrhalis in pharyngeal lymphoid tissue. Methods. Tissue from 40 patients (median age, 7.1 years) undergoing elective tonsillectomy and/or adenoidectomy was analyzed for the presence of M. catarrhalis by culture, real-time DNA and RNA polymerase chain reaction (PCR), immunohistochemical analysis (IHC), and fluorescent in situ hybridization (FISH). Histologic sections were double stained for M. catarrhalis and immune cell markers, to characterize the tissue distribution of the organism. Intracellular bacteria were identified using confocal laser scanning microscopy (CLSM). Results. Twenty-nine (91%) of 32 adenoids and 17 (85%) of 20 tonsils were colonized with M. catarrhalis. Detection rates for culture, DNA PCR, RNA PCR, IHC, and FISH were 7 (13%) of 52, 10 (19%) of 52, 21 (41%) of 51, 30 (61%) of 49, and 42 (88%) of 48, respectively (P < .001). Histologic analysis identified M. catarrhalis in crypts, intraepithelially, subepithelially, and (using CLSM) intracellularly. M. catarrhalis colocalized with macrophages and B cells in lymphoid follicles. Conclusions. Colonization by M. catarrhalis is more frequent than is determined by surface culture, because the organism resides both within and beneath the epithelium and invades host cell

    A Sleeve-Based, Micromotion Avoiding, Retractable and Tear-Opening (SMART) Insertion Tool for Cochlear Implantation

    Get PDF
    Objective: In classical cochlear implantation, the insertion of the electrode array is strongly affected by the local anatomy and human kinematics. Herein, we present a concept for an insertion tool that allows to optimize the insertion trajectory beyond anatomical constraints and stabilizes the electrode array in manual implantation. A novel sleeve-based design allows the instrument to be compliant and potentially protective to intracochlear structures, while a tear-open mechanism allows it to be removed after insertion by simply retracting the tool. Methods: Conventional and tool-guided manual insertions were performed by expert cochlear implant surgeons in an analog temporal bone model that allows to simultaneously record intracochlear pressure, insertion forces and electrode array deformation. Results: Comparison between conventional and tool-guided insertions demonstrate a substantial reduction of maximum insertion forces, force variations, transverse intracochlear electrode array movement, and pressure transients. Conclusion: The presented tool can be utilized in manual cochlear implantation and significantly improves key metrics associated with intracochlear trauma. Significance: The instrument may ultimately help improve hearing outcomes in cochlear implantation. The versatile design may be used in both manual cochlear implantation and motorized and robotic insertion, as well as image-guided surgery

    A reservoir of Moraxella catarrhalis in human pharyngeal lymphoid tissue

    Get PDF
    BACKGROUND: Early exposure of infants and long-term immunity suggest that colonization with Moraxella catarrhalis is more frequent than is determined by routine culture. We characterized a reservoir of M. catarrhalis in pharyngeal lymphoid tissue. METHODS: Tissue from 40 patients (median age, 7.1 years) undergoing elective tonsillectomy and/or adenoidectomy was analyzed for the presence of M. catarrhalis by culture, real-time DNA and RNA polymerase chain reaction (PCR), immunohistochemical analysis (IHC), and fluorescent in situ hybridization (FISH). Histologic sections were double stained for M. catarrhalis and immune cell markers, to characterize the tissue distribution of the organism. Intracellular bacteria were identified using confocal laser scanning microscopy (CLSM). RESULTS: Twenty-nine (91%) of 32 adenoids and 17 (85%) of 20 tonsils were colonized with M. catarrhalis. Detection rates for culture, DNA PCR, RNA PCR, IHC, and FISH were 7 (13%) of 52, 10 (19%) of 52, 21 (41%) of 51, 30 (61%) of 49, and 42 (88%) of 48, respectively (P<.001). Histologic analysis identified M. catarrhalis in crypts, intraepithelially, subepithelially, and (using CLSM) intracellularly. M. catarrhalis colocalized with macrophages and B cells in lymphoid follicles. CONCLUSIONS: Colonization by M. catarrhalis is more frequent than is determined by surface culture, because the organism resides both within and beneath the epithelium and invades host cells

    Uncovering Vulnerable Phases in Cochlear Implant Electrode Array Insertion: Insights from an In Vitro Model.

    Get PDF
    OBJECTIVES The aim of this study is to improve our understanding of the mechanics involved in the insertion of lateral wall cochlear implant electrode arrays. DESIGN A series of 30 insertion experiments were conducted by three experienced surgeons. The experiments were carried out in a previously validated artificial temporal bone model according to established soft surgery guidelines. The use of an in vitro setup enabled us to comprehensively evaluate relevant parameters, such as insertion force, intracochlear pressure, and exact electrode array position in a controlled and repeatable environment. RESULTS Our findings reveal that strong intracochlear pressure transients are more frequently caused during the second half of the insertion, and that regrasping the electrode array is a significant factor in this phenomenon. For choosing an optimal insertion speed, we show that it is crucial to balance slow movement to limit intracochlear stress with short duration to limit tremor-induced pressure spikes, challenging the common assumption that a slower insertion is inherently better. Furthermore, we found that intracochlear stress is affected by the order of execution of postinsertion steps, namely sealing the round window and posterior tympanotomy with autologous tissue and routing of the excess cable into the mastoid cavity. Finally, surgeons' subjective estimates of physical parameters such as speed, smoothness, and resistance did not correlate with objectively assessed measures, highlighting that a thorough understanding of intracochlear mechanics is essential for an atraumatic implantation. CONCLUSION The results presented in this article allow us to formulate evidence-based surgical recommendations that may ultimately help to improve surgical outcome and hearing preservation in cochlear implant patients

    Minimum audible angle, just noticeable interaural differences and speech intelligibility with bilateral cochlear implants using clinical speech processors

    No full text
    Sound localization and speech intelligibility were assessed in 5 patients implanted bilaterally with Medel C40+ or Medel C40 cochlear implant (CI) systems. The minimum audible angle (MAA) around the head in the horizontal plane was assessed in patients with bilateral CI using white noise bursts of 1000 ms duration presented from a loudspeaker mounted on a rotating boom and compared with the MAA of age-matched normal hearing controls. Spatial discrimination was found to be good in front and in the back of the head with near-normal MAA values (patients: 3-8 degrees , controls: 1-4 degrees ). In contrast, poor performance on the sides was found (patients: 30 to over 45 degrees , controls 7-10 degrees ). Bilateral CI significantly improved spatial discrimination in front for all patients, when compared with the use of either CI alone. Just noticeable differences (JNDs) in interaural intensity and time were assessed using white noise bursts (1000 ms duration; 50 ms linear ramp). In addition, interaural time JNDs were assessed using click trains (800 ms duration, 40 mus clicks, 50 Hz) and noise bursts in which either only the envelope or only the fine structure was shifted in time. In comparison with normal hearing controls, patients with bilateral CI showed near-normal interaural intensity JNDs but substantially poorer interaural time JNDs depending on the type of stimulus. In contrast to envelope onset/offset cues, interaural fine structure time differences were not perceived by the patients using CI systems employing the continuous interleaved sampling strategy without synchronization between their pulse stimulation times. Speech intelligibility in quiet and CCITT noise from the side (+/-90 degrees ) was assessed using the German HSM sentence test and was significantly better when using bilateral CI in comparison with either unilateral CI, mainly due to a head shadow effect. These favorable results are in agreement with the patients' subjective experiences assessed with a questionnaire and support the use of bilateral CI

    Bilateral cochlear implantation and directional multi-microphone systems

    No full text
    Better speech understanding in noise is a common goal of bilateral cochlear implantation and directional multi-microphone systems. In this study, the performance of five signal processing/presentation strategies is compared: (1) monaural presentation using a single omnidirectional microphone, (2) monaural presentation using a simple two-microphone beamformer in a behind-the-ear (BTE) housing, (3) monaural presentation using a complex four-microphone adaptive beamformer, (4) binaural presentation using two omnidirectional microphones and (5) binaural presentation using two simple two-microphone beamformers in separate behind-the-ear units

    Scuba diving with cochlear implants

    No full text
    We report on a patient with bilateral cochlear implants (a Med-El Combi40 and a Med-El Combi40+), as well as considerable experience in scuba diving with both of his implants. After having been exposed to 68 and 89 dives, respectively, in depths of up to 43 m, both cochlear implants are in working order and the patient continues to receive excellent speech recognition scores with both cochlear implant systems. The presented data show that scuba diving after cochlear implantation is possible over a considerable number of dives without any major negative impact on the implants

    In-the-canal versus behind-the-ear microphones improve spatial discrimination on the side of the head in bilateral cochlear implant users

    No full text
    To test whether in-the-canal (ITC) microphones have an impact on spatial discrimination and speech perception by taking advantage of auricular cues

    A Reservoir of Moraxella catarrhalis

    No full text
    corecore