83 research outputs found

    The influence of host dispersal on the gene flow and genetic diversity of generalist and specialist ectoparasites

    Get PDF
    CITATION:Conrad A Matthee (2020) The influence of host dispersal on the gene flow and genetic diversity of generalist and specialist ectoparasites, African Zoology, 55:2, 119-126, DOI: 10.1080/15627020.2020.1762512The original publication is available at:https://www.tandfonline.com/loi/tafz20The dispersal and subsequent gene flow within parasite species is the result of a complex interaction between parasite life history, host life history and abiotic environmental factors. To gain more insights into the drivers responsible for parasite dispersal, COI mtDNA genetic data derived from six southern African generalist parasite species, including fleas, mites and ticks were compared with four specialist species from the same geographic region. Generalist tick species represented by Amblyomma hebraeum, Hyalomma truncatum and H. rufipes all occur temporarily on highly mobile ungulate hosts and showed high levels of haplotypic genetic diversity and high levels of dispersal with an average intraspecific global Fst (population differentiation index) value of 0.27 (±0.13). Generalist parasites, such as fleas, Listropsylla agrippinae and Chiastopsylla rossi, and one mite species, Laelaps muricola, that are all semi-permanent on the host and restricted to less mobile hosts species, showed a similar high level of genetic diversity, but an intermediate average Fst value of 0.67 (±0.11). Highly specialised semi-permanent parasites, such as the mite L. giganteus and the permanent lice Polyplax praomydis, Hoplopleura patersoni and P. arvicanthis recorded the lowest level of genetic diversity and a low level of gene flow among geographic sampling localities with an average Fst value of 0.95 (±0.05). This study provides strong support for the Specialist Generalist Variation Hypothesis (SGVH) and highlights the role that host dispersal and host specialisation by parasites play in the dispersal and evolution of ectoparasites

    Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments

    Get PDF
    The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Rodent suprafamilial phylogenetic relationships are investigated in the present study using approximately 7600 nucleotide characters derived from two mitochondrial genes (Cytochrome b and 12S rRNA), two nuclear exons (IRBP and vWF) and four nuclear introns (MGF, PRKC, SPTBN, THY). Because increasing the number of nucleotides does not necessarily increase phylogenetic signal (especially if the data is saturated), we assess the potential impact of saturation for each dataset by removing the fastest-evolving positions that have been recognized as sources of inconsistencies in phylogenetics

    First record of the pantropical blue tick Rhipicephalus microplus in Namibia

    Get PDF
    The invasive pantropical blue tick, Rhipicephalus microplus, has recently been collected from cattle in Namibia. A cross-sectional study aimed at recording the geographic distribution of Rhipicephalus decoloratus and establishing whether R. microplus is present in Namibia was conducted towards the end of summer (March–April) 2013. Ticks were collected from cattle on 18 privately owned farms across a large geographical scale. Ticks were collected from three to five cattle per farm and species belonging to the genera Hyalomma and Rhipicephalus were recovered. Rhipicephalus decoloratus was present on all farms and R. microplus was recorded on four of the farms. The small numbers of R. microplus compared to R. decoloratus collected in the mixed infestations, suggests that the introduction events were recent.Stellenbosch University and the National Research Foundation (IFR2011032500004)http://link.springer.com/journal/10493hb2013ab201

    Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of vicariance events on the establishment of phylogeographic patterns in the marine environment is well documented, and generally accepted as an important cause of cladogenesis. Founder dispersal (i.e. long-distance dispersal followed by founder effect speciation) is also frequently invoked as a cause of genetic divergence among lineages, but its role has long been challenged by vicariance biogeographers. Founder dispersal is likely to be common in species that colonize remote habitats by means of rafting (e.g. seahorses), as long-distance dispersal events are likely to be rare and subsequent additional recruitment from the source habitat is unlikely. In the present study, the relative importance of vicariance and founder dispersal as causes of cladogenesis in a circumglobally distributed seahorse lineage was investigated using molecular dating. A phylogeny was reconstructed using sequence data from mitochondrial and nuclear markers, and the well-documented closure of the Central American seaway was used as a primary calibration point to test whether other bifurcations in the phylogeny could also have been the result of vicariance events. The feasibility of three other vicariance events was explored: a) the closure of the Indonesian Seaway, resulting in sister lineages associated with the Indian Ocean and West Pacific, respectively; b) the closure of the Tethyan Seaway, resulting in sister lineages associated with the Indo-Pacific and Atlantic Ocean, respectively, and c) continental break-up during the Mesozoic followed by spreading of the Atlantic Ocean, resulting in pairs of lineages with amphi-Atlantic distribution patterns.</p> <p>Results</p> <p>Comparisons of pairwise genetic distances among the seahorse species hypothesized to have diverged as a result of the closure of the Central American Seaway with those of published teleost sequences having the same distribution patterns show that the seahorses were among the last to diverge. This suggests that their cladogenesis was associated with the final closure of this seaway. Although two other divergence events in the phylogeny could potentially have arisen as a result of the closures of the Indonesian and Tethyan seaways, respectively, the timing of the majority of bifurcations in the phylogeny differed significantly from the dates of vicariance events suggested in the literature. Moreover, several divergence events that resulted in the same distribution patterns of lineages at different positions in the phylogeny did not occur contemporaneously. For that reason, they cannot be the result of the same vicariance events, a result that is independent of molecular dating.</p> <p>Conclusion</p> <p>Interpretations of the cladogenetic events in the seahorse phylogeny based purely on vicariance biogeographic hypotheses are problematic. We conclude that the evolution of the circumglobally distributed seahorse lineage was strongly influenced by founder dispersal, and suggest that this mode of speciation may be particularly important in marine organisms that lack a pelagic dispersal phase and instead disperse by means of rafting.</p

    Documenting the microbiome diversity and distribution in selected fleas from South Africa with an emphasis on the cat flea, Ctenocephalides f. felis.

    Get PDF
    The factors that influence parasite associated bacterial microbial diversity and the geographic distributions of bacteria are not fully understood. In an effort to gain a deeper understanding of the relationship between the bacterial diversity of Ctenocephalides fleas and host species and the external environment, we conducted a metagenetic analysis of 107 flea samples collected from 8 distinct sampling sites in South Africa. Pooled DNA samples mostly comprising of 2 or 3 individuals sampled from the same host, and belonging to the same genetic cluster, were sequenced using the Ion PGMâ„¢ Hi-Qâ„¢ Kit and the Ion 316â„¢ Chip v2. Differences were detected in the microbiome compositions between Ctenocephalides felis, Ctenocephalides canis and Ctenocephalides connatus. Although based on a small sample, C. connatus occurring on wildlife harboured a higher bacterial richness when compared to C. felis on domestic animals. Intraspecific differences in the microbial OTU diversity were detected within C. f. felis that occurred on domestic cats and dogs. Different genetic lineages of C. f. felis were similar in microbial compositions but some differences exist in the presence or absence of rare bacteria. Rickettsia and Bartonella OTU's identified in South African cat fleas differ from those identified in the USA and Australia. Intraspecific microbial compositions also differ across geographic sampling sites. Generalized dissimilarity modelling showed that temperature and humidity are potentially important environmental factors explaining the pattern obtained

    Natural hosts of the larvae of Nuttalliella sp. (N. namaqua?) (Acari: Nuttalliellidae)

    Get PDF
    The first collection of unengorged and fully engorged larvae of Nuttalliella sp. (N. namaqua?) from the murid rodents Micaelamys namaquensis, Aethomys chrysophilus and Acomys spinosissimus in Limpopo Province and from M. namaquensis in the Northern Cape Province, South Africa, is documented. A total of nine larvae were collected from two M. namaquensis in the Soutpansberg mountain range in the Limpopo Province during April 2009. During the last week of September 2011, 221 larvae were collected from rodents at the same locality and 10 of 48 M. namaquensis, 6 of 12 Ae. chrysophilus and 3 of 14 Ac. spinosissimus were infested. One of the M. namaquensis harboured 53 larvae. Five larvae were collected from two M. namaquensis in the Northern Cape Province. Total genomic DNA was extracted from two larvae and a region of the 18S rRNA gene was sequenced for these. BLASTn searches revealed similarity between these specimens and the Nuttalliella sequences published on GenBank.http://www.ojvr.orgab201

    Effects of Tectonics and Large Scale Climatic Changes On the Evolutionary History of \u3ci\u3eHyalomma\u3c/i\u3e ticks

    Get PDF
    Hyalomma Koch, 1844 are ixodid ticks that infest mammals, birds and reptiles, to which 27 recognized species occur across the Afrotropical, Palearctic and Oriental regions. Despite their medical and veterinary importance, the evolutionary history of the group is enigmatic. To investigate various taxonomic hypotheses based on morphology, and also some of the mechanisms involved in the diversification of the genus, we sequenced and analysed data derived from two mtDNA fragments, three nuclear DNA genes and 47 morphological characters. Bayesian and Parsimony analyses based on the combined data (2242 characters for 84 taxa) provided maximum resolution and strongly supported the monophyly of Hyalomma and the subgenus Euhyalomma Filippova, 1984 (including H. punt Hoogstraal, Kaiser and Pedersen, 1969). A predicted close evolutionary association was found between morphologically similar H. dromedarii Koch, 1844, H. somalicum Tonelli Rondelli, 1935, H. impeltatum Schulze and Schlottke, 1929 and H. punt, and together they form a sister lineage to H. asiaticum Schulze and Schlottke, 1929, H. schulzei Olenev, 1931 and H. scupense Schulze, 1919. Congruent with morphological suggestions, H. anatolicum Koch, 1844, H. excavatum Koch, 1844 and H. lusitanicum Koch, 1844 form a clade and so also H. glabrum Delpy, 1949, H. marginatum Koch, 1844, H. turanicum Pomerantzev, 1946 and H. rufipes Koch, 1844. Wide scale continental sampling revealed cryptic divergences within African H. truncatum Koch, 1844 and H. rufipes and suggested that the taxonomy of these lineages is in need of a revision. The most basal lineages in Hyalomma represent taxa currently confined to Eurasia and molecular clock estimates suggest that members of the genus started to diverge approximately 36.25 million years ago (Mya). The early diversification event coincides well with the collision of the Indian and Eurasian Plates, an event that was also characterized by large scale faunal turnover in the region. Using S-Diva, we also propose that the closure of the Tethyan seaway allowed for the genus to first enter Africa approximately 17.73 Mya. In concert, our data supports the notion that tectonic events and large scale global changes in the environment contributed significantly to produce the rich species diversity currently found in the genus Hyalomma

    Comparative phylogeography of parasitic Laelaps mites contribute new insights into the specialist-generalist variation hypothesis (SGVH)

    Get PDF
    BACKGROUND: The specialist-generalist variation hypothesis (SGVH) in parasites suggests that, due to patchiness in habitat (host availability), specialist species will show more subdivided population structure when compared to generalist species. In addition, since specialist species are more prone to local stochastic extinction events with their hosts, they will show lower levels of intraspecific genetic diversity when compared to more generalist. RESULTS: To test the wider applicability of the SGVH we compared 337 cytochrome oxidase I mitochondrial DNA and 268 nuclear tropomyosin DNA sequenced fragments derived from two co-distributed Laelaps mite species and compared the data to 294 COI mtDNA sequences derived from the respective hosts Rhabdomys dilectus, R. bechuanae, Mastomys coucha and M. natalensis. In support of the SGVH, the generalist L. muricola was characterized by a high mtDNA haplotypic diversity of 0.97 (±0.00) and a low level of population differentiation (mtDNA Fst= 0.56, p < 0.05; nuDNA Fst = 0.33, P < 0.05) while the specialist L. giganteus was overall characterized by a lower haplotypic diversity of 0.77 (±0.03) and comparatively higher levels of population differentiation (mtDNA Fst = 0.87, P < 0.05; nuDNA Fst = 0.48, P < 0.05). When the two specialist L. giganteus lineages, which occur on two different Rhabdomys species, are respectively compared to the generalist parasite, L. muricola, the SGVH is not fully supported. One of the specialist L. giganteus species occurring on R. dilectus shows similar low levels of population differentiation (mtDNA Fst= 0.53, P < 0. 05; nuDNA Fst= 0.12, P < 0.05) than that found for the generalist L. muricola. This finding can be correlated to differences in host dispersal: R. bechuanae populations are characterized by a differentiated mtDNA Fst of 0.79 (P < 0.05) while R. dilectus populations are less structured with a mtDNA Fst= 0.18 (P < 0.05). CONCLUSION: These findings suggest that in ectoparasites, host specificity and the vagility of the host are both important drivers for parasite dispersal. It is proposed that the SGHV hypothesis should also incorporate reference to host dispersal since in our case only the specialist species who occur on less mobile hosts showed more subdivided population structure when compared to generalist species
    • …
    corecore