20 research outputs found

    Distinct Neural Circuits Underlie Prospective and Concurrent Memory-Guided Behavior

    Get PDF
    The past is the best predictor of the future. This simple postulate belies the complex neurobiological mechanisms that facilitate an individual’s use of memory to guide decisions. Previous research has shown integration of memories bias decision-making. Alternatively, memories can prospectively guide our choices. Here, we elucidate the mechanisms and timing of hippocampal (HPC), medial prefrontal cortex (mPFC), and striatal contributions during prospective memory-guided decision-making. We develop an associative learning task in which the correct choice is conditional on the preceding stimulus. Two distinct networks emerge: (1) a prospective circuit consisting of the HPC, putamen, mPFC, and other cortical regions, which exhibit increased activation preceding successful conditional decisions and (2) a concurrent circuit comprising the caudate, dorsolateral prefrontal cortex (dlPFC), and additional cortical structures that engage during the execution of correct conditional choices. Our findings demonstrate distinct neurobiological circuits through which memory prospectively biases decisions and influences choice execution

    Neural Correlates of Long-Term Memory Enhancement Following Retrieval Practice

    Get PDF
    Retrieval practice, relative to further study, leads to long-term memory enhancement known as the "testing effect." The neurobiological correlates of the testing effect at retrieval, when the learning benefits of testing are expressed, have not been fully characterized. Participants learned Swahili-English word-pairs and were assigned randomly to either the Study-Group or the Test-Group. After a week delay, all participants completed a cued-recall test while undergoing functional magnetic resonance imaging (fMRI). The Test-Group had superior memory for the word-pairs compared to the Study-Group. While both groups exhibited largely overlapping activations for remembered word-pairs, following an interaction analysis the Test-Group exhibited differential performance-related effects in the left putamen and left inferior parietal cortex near the supramarginal gyrus. The same analysis showed the Study-Group exhibited greater activations in the dorsal MPFC/pre-SMA and bilateral frontal operculum for remembered vs. forgotten word-pairs, whereas the Test-Group showed the opposite pattern of activation in the same regions. Thus, retrieval practice during training establishes a unique striatal-supramarginal network at retrieval that promotes enhanced memory performance. In contrast, study alone yields poorer memory but greater activations in frontal regions.This study was partially funded by the Basque Government and the MIT Integrated Learning Initiative

    Medial prefrontal cortex and hippocampal activity differentially contribute to ordinal and temporal context retrieval during sequence memory

    Get PDF
    Remembering sequences of events defines episodic memory, but retrieval can be driven by both ordinality and temporal contexts. Whether these modes of retrieval operate at the same time or not remains unclear. Theoretically, medial prefrontal cortex (mPFC) confers ordinality, while the hippocampus (HC) associates events in gradually changing temporal contexts. Here, we looked for evidence of each with BOLD fMRI in a sequence task that taxes both retrieval modes. To test ordinal modes, items were transferred between sequences but retained their position (e.g., AB3). Ordinal modes activated mPFC, but not HC. To test temporal contexts, we examined items that skipped ahead across lag distances (e.g., ABD). HC, but not mPFC, tracked temporal contexts. There was a mPFC and HC by retrieval mode interaction. These current results suggest that the mPFC and HC are concurrently engaged in different retrieval modes in support of remembering when an event occurred

    Brain differences between persistent and remitted attention deficit hyperactivity disorder

    Get PDF
    Previous resting state studies examining the brain basis of attention deficit hyperactivity disorder have not distinguished between patients who persist versus those who remit from the diagnosis as adults. To characterize the neurobiological differences and similarities of persistence and remittance, we performed resting state functional magnetic resonance imaging in individuals who had been longitudinally and uniformly characterized as having or not having attention deficit hyperactivity disorder in childhood and again in adulthood (16 years after baseline assessment). Intrinsic functional brain organization was measured in patients who had a persistent diagnosis in childhood and adulthood (n = 13), in patients who met diagnosis in childhood but not in adulthood (n = 22), and in control participants who never had attention deficit hyperactivity disorder (n = 17). A positive functional correlation between posterior cingulate and medial prefrontal cortices, major components of the default-mode network, was reduced only in patients whose diagnosis persisted into adulthood. A negative functional correlation between medial and dorsolateral prefrontal cortices was reduced in both persistent and remitted patients. The neurobiological dissociation between the persistence and remittance of attention deficit hyperactivity disorder may provide a framework for the relation between the clinical diagnosis, which indicates the need for treatment, and additional deficits that are common, such as executive dysfunctions.McGovern Institute for Brain Research at MIT (Poitras Center for Affective Disorders Research)Massachusetts General Hospital (Paediatric Psychopharmacology Council Fund

    Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory

    No full text
    The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment, we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment, we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments, the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning

    Medial prefrontal cortex and hippocampal activity differentially contribute to ordinal and temporal context retrieval during sequence memory

    Get PDF
    Remembering sequences of events defines episodic memory, but retrieval can be driven by both ordinality and temporal contexts. Whether these modes of retrieval operate at the same time or not remains unclear. Theoretically, medial prefrontal cortex (mPFC) confers ordinality, while the hippocampus (HC) associates events in gradually changing temporal contexts. Here, we looked for evidence of each with BOLD fMRI in a sequence task that taxes both retrieval modes. To test ordinal modes, items were transferred between sequences but retained their position (e.g., AB3). Ordinal modes activated mPFC, but not HC. To test temporal contexts, we examined items that skipped ahead across lag distances (e.g., ABD). HC, but not mPFC, tracked temporal contexts. There was a mPFC and HC by retrieval mode interaction. These current results suggest that the mPFC and HC are concurrently engaged in different retrieval modes in support of remembering when an event occurred

    Human aging reduces the neurobehavioral influence of motivation on episodic memory

    No full text
    The neural circuitry mediating the influence of motivation on long-term declarative or episodic memory formation is delineated in young adults, but its status is unknown in healthy aging. We examined the effect of reward and punishment anticipation on intentional declarative memory formation for words using an event-related functional magnetic resonance imaging (fMRI) monetary incentive encoding task in twenty-one younger and nineteen older adults. At 24-hour memory retrieval testing, younger adults were significantly more likely to remember words associated with motivational cues than neutral cues. Motivational enhancement of memory in younger adults occurred only for recollection (“remember” responses) and not for familiarity (“familiar” responses). Older adults had overall diminished memory and did not show memory gains in association with motivational cues. Memory encoding associated with monetary rewards or punishments activated motivational (substantia nigra/ventral tegmental area) and memory-related (hippocampus) brain regions in younger, but not older, adults during the target word periods. In contrast, older and younger adults showed similar activation of these brain regions during the anticipatory motivational cue interval. In a separate monetary incentive delay task that did not require learning, we found evidence for relatively preserved striatal reward anticipation in older adults. This supports a potential dissociation between incidental and intentional motivational processes in healthy aging. The finding that motivation to obtain rewards and avoid punishments had reduced behavioral and neural influence on intentional episodic memory formation in older compared to younger adults is relevant to life-span theories of cognitive aging including the dopaminergic vulnerability hypothesis. Keywords: monetary incentive encoding; monetary incentive delay; reward; punishment; aging; fMRI; memory; learning; motivation; hippocampus; ventral tegmental area; striatu
    corecore