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SUMMARY

The past is the best predictor of the future. This sim-
ple postulate belies the complex neurobiological
mechanisms that facilitate an individual’s use of
memory to guide decisions. Previous research has
shown integration of memories bias decision-mak-
ing. Alternatively, memories can prospectively guide
our choices. Here, we elucidate the mechanisms and
timing of hippocampal (HPC), medial prefrontal
cortex (mPFC), and striatal contributions during
prospective memory-guided decision-making. We
develop an associative learning task inwhich the cor-
rect choice is conditional on the preceding stimulus.
Two distinct networks emerge: (1) a prospective
circuit consisting of the HPC, putamen, mPFC, and
other cortical regions, which exhibit increased acti-
vation preceding successful conditional decisions
and (2) a concurrent circuit comprising the caudate,
dorsolateral prefrontal cortex (dlPFC), and additional
cortical structures that engage during the execution
of correct conditional choices. Our findings demon-
strate distinct neurobiological circuits through which
memory prospectively biases decisions and influ-
ences choice execution.

INTRODUCTION

Successful decision-making often requires drawing upon the

past. The influence of memory on decision-making has been

documented across a diverse array of tasks (Weber et al.,

1993; Jadhav et al., 2012; Wimmer and Shohamy, 2012; Zeitha-

mova et al., 2012a; Pfeiffer and Foster, 2013; Gluth et al., 2015;

Shohamy and Daw, 2015; Murty et al., 2016; Bornstein et al.,

2017; O’Doherty et al., 2017). Much of this research has exam-

ined ‘‘retrospective-integration’’ (Shohamy and Daw, 2015) or

how experiences containing overlapping content are recalled,

combined, and ultimately bias our future choices (Zeithamova

and Preston, 2010; Wimmer and Shohamy, 2012; Zeithamova

et al., 2012a, 2012b; Gluth et al., 2015; Murty et al., 2016). How-

ever, memories can also prospectively guide our choices. The

neural mechanisms by which memory prospectively biases our

decisions and the timing of those contributions remain central

questions.

Memory of our intentions to act in the future, known as pro-

spective memory, has demonstrated the influence of memory

on subsequent behavior (Kvavilashvili, 1987; Brandimonte

et al., 1996). Most research has focused on strategic monitoring

and maintenance of prospective memory cues and have impli-

cated the rostral prefrontal cortex (rPFC; BA10) as an important

region for that process (Burgess et al., 2003, 2011; Gilbert et al.,

2006; Simons et al., 2006; Haynes et al., 2007; Okuda et al.,

2007; Soon et al., 2008; Gilbert, 2011; Benoit et al., 2012; Mo-

mennejad and Haynes, 2012, 2013).

Less research has been devoted to the neurobiological mech-

anisms that support encoding prospective memory (Gilbert,

2011; Momennejad and Haynes, 2012; Cona et al., 2015); how-

ever, some computational work suggests prospective memory

emerges from interactions between the prefrontal cortex and

hippocampus (HPC), with the latter responsible for encoding as-

sociations between action plans and the context in which they

are to take place (Cohen andO’Reilly, 1996). Research in rodents

using spatial tasks strongly supports the role of the HPC through

prospective neural signals (Benchenane et al., 2010; Wang and

Morris, 2010; Jadhav et al., 2012, 2016; Pfeiffer and Foster,

2013; Euston et al., 2012; Shin and Jadhav, 2016; Yu and Frank,

2015). Based on the ability of the HPC to rapidly acquire rela-

tional representations (Eichenbaum and Cohen, 1988; Squire

et al., 2004), contribute to future thinking (Addis et al., 2007;

Schacter et al., 2017), and support prospective neural coding

(Ferbinteanu and Shapiro, 2003), HPC activation would be

expected to contribute to prospective memory-guided behavior.

In addition to area BA10, other regions of the medial prefrontal

cortex (mPFC) likely contribute to mechanisms of prospective

memory, which is due, in part, to structural and functional diver-

sity (de la Vega et al., 2016). Although prospective memory

paradigms have shownmedial rPFC activation to reflect ongoing

tasks, but not delayed intentions (Burgess et al., 2003, 2011;

Gilbert et al., 2006; Simons et al., 2006; Benoit et al., 2012), func-

tional decoding analyses have identified additional mPFC re-

gions related to storing of delayed intentions (Haynes et al.,

2007; Soon et al., 2008; Gilbert, 2011; Momennejad and Haynes,

2013). Additionally, involvement of the mPFC in maintenance of

long-term memories (van Kesteren et al., 2010; Bonnici et al.,

2012), integration of memories across episodes (Zeithamova

and Preston, 2010), inferential decisions (Zeithamova et al.,

2012a), and anatomical connections with the HPC and
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pre- and primary motor cortex (Barbas and Blatt, 1995; Cavada

et al., 2000; Heidbreder and Groenewegen, 2003; Hoover and

Vertes, 2007) all suggest the mPFC is well suited to use memory

to guide behavior. Further, research in awake, behaving rodents

has identified interactions between the HPC and mPFC related

to memory-guided behavior (Benchenane et al., 2010; Shin

and Jadhav, 2016; Jadhav et al., 2016), which was prominent

during learning (Tang et al., 2017). Thus, we expect both activa-

tion in the mPFC and its interactions with the HPC to contribute

to prospective memory.

The striatum, also important for decision-making, supports

action selection (Balleine et al., 2007). Striatal activity (Tremblay

et al., 1998) represents motor preparation, reward expectation,

and prediction error (Schultz et al., 2003), all uniquely contrib-

uting to instrumental behavior, both response outcome (goal

directed) and stimulus response (habitual) (Graybiel, 1995; Yin

and Knowlton, 2004; Yin et al., 2005; Liljeholm and O’Doherty,

2012). Notably, prospective memory paradigms rely on stim-

ulus-response associations between prospective cues and spe-

cific actions (Einstein et al., 2005; Beck et al., 2014). Taken

together, these findings suggest the striatum supports not only

prospective biasing of our choices but also execution of those

decisions.

The extent to which the HPC, mPFC, and striatum prospec-

tively contribute to memory-guided, conditional behavior in

humans, as well as the timing of each, has not been demon-

Figure 1. Schematic Diagram of Experiment

and Behavioral Results

(A) Total number of trials across experiment cate-

gorized by sets, runs, and trial types.

(B) Task and baseline trials were identical in timing

(2.5 s) and structure.

(C) Example sequence of events highlighting cor-

rect (green arrows and boxes) and incorrect (red

arrows and boxes) responses for both fixed and

conditional trials.

(D) Performance curves were calculated for each

participant across all image sets, producing 60

unique curves (gray lines). Performance was

defined as the probability of a correct response on

the respective trial. Dark red lines represent mean

curves for each stimulus type, whereas the sur-

rounding pink expanse indicates upper and lower

bound 95% confidence intervals. Blue dashed

lines indicate chance performance of 50%.

strated. Evidence from statistical learning

studies have shown predictive activations

in the HPC (Bornstein and Daw, 2012;

Schapiro et al., 2012), whereas the

mPFC is engaged during events sharing

temporal associations (Schapiro et al.,

2013). Prospective activations have also

been identified in functionally decodable

regions of the visual pathway during a

multistep reward-learning task (Doll

et al., 2015). Striatum activation, specif-

ically in the putamen, has been associ-

ated with response preparation and prediction error using similar

tasks (Bornstein and Daw, 2012; Doll et al., 2015).

Here, we designed a visuomotor-associative learning para-

digm (Petrides, 1997; Law et al., 2005) to examine how the

HPC, mPFC, and regions of the striatum (dorsal anterior caudate

and putamen) contribute to memory-guided behavior, both

before and during conditional decision-making. Participants

learned, through trial and error, to associate three stimuli with

specific responses. Two images were fixed trials, whose associ-

ations were consistent across all presentations. For the third

image, or the conditional trial, correct response was dependent

on the identity of the preceding trial stimulus. In other words, the

correct association for the third image was conditional on the

previous fixed association (Figures 1A–1C). All learning stimuli

were presented 80 times across two runs (40 trials per run). A

total of three sets of stimuli were learned. Trials lasted 3 s and

were as follows: (1) a central fixation cross (700 ms); (2) a kalei-

doscopic image and two flanking boxes, during which partici-

pants make their selection (1,000ms); and (3) feedback provided

to participants (green, ‘‘Yes!’’ if correct; red, ‘‘No!’’ if incorrect;

and white ‘‘?’’ if a response was not received in time) (800 ms).

All participants were given instructions on the task and received

training outside of the scanner with a set of three unique training

images.

With this approach, we investigated the mechanisms of

memory-guided behavior. Two distinct neurobiological circuits
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emerged: one through which prospective memories are

encoded and subsequently bias conditional memory-guided

decisions, and a second, which directs execution of the concur-

rent choice.

RESULTS

Anatomical region of interest (ROI) and exploratory whole-brain

analyses tested: (1) differences in prospective activation during

fixed trials immediately preceding correct, compared with incor-

rect, conditional trials to evaluate neurobiological mechanisms

of how memory influences conditional decision-making; (2)

correlations between first-trial regional activation and second-

trial performance for sequential fixed-trial pairs when stimuli

either changed or remained the same to further validate whether

prospective activations were related to subsequent behavior; (3)

prospective functional coupling between anatomically con-

nected regions of interest during periods of learning, compared

with periods of non-learning, to corroborate a recent study in

rodents that found enhanced functional coupling during learning

(Tang et al., 2017); and (4) activation differences between correct

conditional and correct fixed association trials to examine

differences in brain activations for trials at the time the condi-

tional action was selected.

Behavioral Performance
We found participants were quicker and more accurate on fixed,

compared with conditional, trials, and both were performed

better than chance. For distributions that violated assumptions

of parametric methods (i.e., accuracy and onset of learning),

non-parametric Wilcoxon signed-rank and Friedman tests

were performed. All results were Bonferroni corrected for multi-

ple comparisons, where appropriate. To determine whether

participants performed better than chance, median accuracy

was calculated across stimulus sets for each participant. Partic-

ipants demonstrated significantly better than chance perfor-

mance for the fixed-right (FixR: median = 0.943, interquartile

range [IQR]: 0.926 – 0.958; FixR versus chance: Z = �3.920, p <

0.0001), fixed-left (FixL: median = 0.928, IQR = 0.91 �0.945;

FixL versus chance: Z =�3.921, p < 0.0001), and conditional images

(conditional: median = 0.77, IQR: 0.715 – 0.803;

conditionalversus chance: Z = �3.920, p < 0.0001). When

comparing performance across trial types (FixR versus

FixL versus conditional), we observed a significant difference

for accuracy (c2(2, N = 20) = 31.013, p < 0.0001). To determine

whether unexpected mnemonic differences exist between

fixed-left and fixed-right trials, we compared accuracies. No

significant difference between fixed-left and fixed-right trials

was observed (Z = �1.248, p = 0.212). Given the consistent as-

sociation between stimuli and response for fixed trials, we

expected greater accuracy compared with conditional trials.

Participants performed significantly better for both fixed-left

(Z = �3.920, p < 0.001) and fixed-right (Z = �3.920, p < 0.001),

compared with conditional trials. A statistically significant differ-

ence was observed for response time between the three trial

types (F(2,38) = 29.22, p < 0.0001, partial h2 = 0.61). Fixed-left

(0.580 ± 0.008 s) and fixed-right (0.588 ± 0.011 s) trials did not

significantly differ (t(19) = �1.086, p = 0.291). However, partici-

pants were significantly slower for conditional (0.632 ± 0.009),

compared with either fixed-left (t(19) = �9.429, p < 0.001) or

fixed-right (t(19) = �5.006, p < 0.001), trials. To assess whether

conditional performance was related to the depth of processing

during fixed trials, we examined whether response time for fixed

trials varied as a function of conditional performance. Response

times of fixed trials preceding correct conditional trials were not

significantly different from those of fixed trials preceding incor-

rect conditional trials (t(19) = 0.24, p = 0.81).

Next, we found the onset of learning for conditional trials was

delayed compared with fixed-association trials. To evaluate dif-

ferences in learning between the three stimuli, we calculated

learning curves with a logistic regression algorithm designed to

assess learning as a dynamic process across trials (Figure 1C;

Smith and Brown, 2003; Wirth et al., 2003; Smith et al., 2004).

We examined differences in the onset of learning between fixed

and conditional trials. The onset of learning was defined as the

trial in which the lower-bound 95% confidence interval

exceeded chance performance. There was a statistically signifi-

cant difference in onset of learning between the three trial types

(c2(2) = 22.354, p < 0.001). The onset of learning for fixed-left

(median = 3.835, IQR = 2–7) and fixed-right (median = 3.833,

IQR = 1–7) trials was not significantly different (Z = �0.081,

p = 0.936). In contrast, the onset of learning was delayed for con-

ditional (median = 11.5, IQR = 6–26), compared with fixed-left

(Z = �3.267, p = 0.001) and fixed-right (Z = �3.435, p = 0.001)

trials.

In summary, no statistically significant differences were

observed for accuracy, reaction time, or learning onset between

fixed-left and fixed-right trials. Participants, however, were

slower to respond, less accurate, and exhibited a delay in

learning onset for conditional trials compared to fixed trials. All

trial types were performed significantly better than chance.

Prospective Activations of the HPC and Putamen, but
Not ACC and Caudate, Differentiate Conditional Trial
Performance
Success on conditional trials required participants to remember

which of two fixed stimuli had been presented on the preceding

trial. We anatomically defined regions of interest bilaterally (HPC,

anterior cingulate cortex [ACC], anterior dorsal caudate, and pu-

tamen; see STAR Methods) and contrasted level of activation on

fixed trials immediately preceding correct and incorrect condi-

tional trials. We predicted the HPC, ACC, and anterior dorsal

caudate would exhibit greater prospective activations preceding

correct, compared with incorrect, conditional trials given their

contributions to relational memory, memory integration, and

flexible goal-directed behavior, respectively. In contrast, we ex-

pected the putamen to have less of a prospective role.

The HPC and putamen, but not the ACC and anterior dorsal

caudate, prospectively differentiated successful conditional

memory-guided behavior. Increased HPC activation was

observed during fixed trials immediately preceding correct,

compared with incorrect, conditional trials (Figure 2A; t(19) =

3.275, p = 0.004, d = 0.63). No significant difference in ACC (Fig-

ure 2B; t(19) = 0.815, p = 0.42) or anterior dorsal caudate

(Figure 2C; t(19) = �1.509, p = 0.15) activation was observed

for fixed trials before correct and incorrect conditional trials.
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Contrary to our hypothesis, greater putamen activation was

observed during fixed trials before correct, relative to incorrect,

conditional trials (Figure 2D; t(19) = 3.247, p = 0.004, d = 0.57).

To ensure these findings were not simply a performance

artifact from the preceding fixed trial, the same analysis was

conducted limiting the scope to correct fixed trials preceding

correct and incorrect conditionals. Again, both the HPC (Fig-

ure S1A; t(19) = 4.319, p = 0.0004, d = 0.88) and putamen (Fig-

ure S1D; t(19) = 2.565, p = 0.02, d = 0.59) exhibited significantly

greater activation during fixed trials preceding correct,

compared with incorrect, conditional trials. A trend in the ACC

(Figure S1B; t(19) = 2.059, p = 0.05) or dorsal anterior caudate

(Figure S1C; t(19) =�0.339, p = 0.74) activations were observed.

To provide further mechanistic insight into the nature of pro-

spective signaling in the HPC and putamen, we compared acti-

vations for correct-only fixed-left, fixed-right, and conditional

trials. If the HPC and putamen contribute to either an encoding

or prospective signal, we would expect to observe greater acti-

vation in these regions for fixed trials compared with conditional

trials. In contrast, if conditional-trial performance is dependent

on retrieval-related mechanisms, the opposite pattern (greater

activation for conditional, compared with fixed, trials) should

emerge. Activations between fixed and conditional trials were

significantly different in the HPC (F(2,38) = 10.575, p = 0.001,

h2 = 0.358). Simple effects analysis revealed significantly greater

activation for both fixed-left (–1.103 ± 0.45) and fixed-right

(–1.266 ± 0.46) compared with conditional (�1.882 ± 0.47) trials

(p’s < 0.002), whereas no significant difference was found

between fixed-left and fixed-right (Figure S2; t(19) = 0.935, p =

0.36). No significant differences were observed for trial type (Fig-

ure S2; F(2,38) = 0.211, p = 0.81) in the putamen.

The results of our a priori anatomical ROI analysis support the

conclusion that prospective HPC and putamen, but not ACC and

dorsal anterior caudate, activation are related to successful con-

ditional memory.

Prospective Cortical and Subcortical Activations for
Successful Memory-Guided Conditional Behavior
Motivated by the complexities of our conditional memory-guided

task and null findings for the ACC—our proxy for the mPFC—an

exploratory whole-brain analysis was performed to evaluate

potential contributions of additional cortical and subcortical re-

gions to successful conditional memory-guided behavior. We

found memory-guided behavior prospectively employs a broad

network of cortical and subcortical regions to guide our choices.

We searched for voxel-wise differences in activation during fixed

trials preceding correct and incorrect conditional trials. We per-

formed a one-sample t test with FSL’s software Randomize, with

Figure 2. Prospective Activation of the HPC and Putamen, but Not ACC and Caudate, Differentiate Conditional Trial Performance

(A–D) Anatomical regions of interest included: (A) hippocampus, (B) anterior cingulate cortex (ACC), (C) dorsal caudate, and (D) putamen. Boxplots with overlaid

swarm plots represent activation for fixed trials preceding the correct (corr cond) and the incorrect (incorr cond) conditional trials. We observed significantly

greater activation in the (A) hippocampus and (D) putamen during fixed trials that preceded correct, compared with incorrect, conditional trials. Error bars

represent the range of values.

See also Figure S1.

2544 Cell Reports 28, 2541–2553, September 3, 2019



threshold-free cluster enhancement (tfce) correction with a

threshold of p < 0.05. Consistent with our a priori anatomical

ROI analysis, clusters along the entire longitudinal axis of

HPC and putamen survived correction for multiple comparisons

when contrasting greater activation for fixed trials preceding

correct conditional trials against fixed trials preceding incorrect

conditional trials (Table S1). Additional clusters were observed

(Figure 3) for the same contrast in the mPFC (paracingulate

cortex extending into medial BA10 and subgenual ACC) and

posterior cingulate cortex (PCC), including the retrosplenial

cortex, motor cortex, paracentral lobule, superior temporal

cortex, ventral visual cortex, and the cerebellum (Figure S3).

No regions survived correction for multiple comparisons

when contrasting greater activation for fixed trials preceding

incorrect conditional trials relative to fixed trials preceding

correct conditional trials. Our exploratory results suggest that

a widespread cortical and subcortical network prospectively

bias conditional memory-guided decisions, including in regions

in the mPFC notably anterior to our anatomically defined ROI in

the ACC.

Prospective Putamen Activation during Fixed Trials Is
Related to Behavioral Performance on Subsequent
Trials when Stimulus Is Repeated
In addition to influencing decisions on conditional trials,

prospective activations should also bias behavioral perfor-

mance on subsequent fixed trials, especially when trials

repeat. To evaluate the relationship between prospective

fMRI activation and subsequent performance for fixed trials,

temporally adjacent, fixed trial pairs were selected and sorted

according to whether stimuli changed (e.g., fixed left / fixed

right) or remained the same (e.g., fixed left / fixed left).

Using the same four a priori anatomical ROIs, Pearson’s

correlation coefficients were calculated between regional

activation during the first trial and the performance in the

second. Beta results were modeled separately for fixed trials,

followed by the same or different stimuli. Performance

was defined as mean proportion of correct responses for

trials that either remained the same (fixed same) or changed

Figure 3. Prospective Cortical Activation for

Successful Memory-Guided Conditional

Behavior

Cortical regions exhibiting greater activation

for fixed trials before correct conditional (cond)

trials > fixed trials before incorrect cond trials after

whole-brain exploratory analysis (family-wise error

[FWE] tfce-corrected p < 0.05). Regions of activa-

tion included the medial prefrontal cortex (mPFC),

posterior cingulate cortex, superior temporal,

motor cortex, ventromedial occipital, and the par-

acentral lobule.

(fixed change). We expected fixed

trial activation would be related to

performance on upcoming fixed trials.

To ensure our predictions were not

a result of temporal adjacency, we

compared activation for conditional trials to the following

fixed-trial performance.

We found activation in the putamen for preceding, fixed

trials was associated with behavioral performance of the

following fixed trials when stimuli remained the same (Fig-

ure 4D, right; r = 0.535, p = 0.015), but not when changed (Fig-

ure 4D, left; r = 0.246, p = 0.30). No significant correlation was

observed between HPC activation and performance for fixed-

change trials (Figure 4A, left; r = 0.178, p = 0.45). However, a

trend was observed for fixed-same trials (Figure 4A, right; r =

0.417, p = 0.07). We did not find a significant relationship be-

tween ACC activation and performance for fixed-change (Fig-

ure 4B, left; r = �0.205, p = 0.39) or fixed-same (Figure 4B,

right; r = 0.343, p = 0.14) trials. No association between dorsal

anterior caudate activation and performance was observed for

fixed-change (Figure 4C, left; r = �0.161, p = 0.50) and fixed-

same (Figure 4C, right; r = 0.063, p = 0.79) trials. Correlations

were calculated between activations during conditional trials

and the following fixed-trial performance. No significant rela-

tionship between conditional activation and subsequent

behavioral performance was found (Figures S4A–S4D; all r <

0.22, all p > 0.05).

Consistent with our hypotheses, prospective fixed-trial activa-

tions were associatedwith subsequent fixed-trial behavioral per-

formance in the putamen, whereas a trend was observed for the

HPC. In addition, no similar relationship was identified when

comparing conditional activations to upcoming fixed-trial

performance.

Prospective HPC-ACC Functional Correlations Are
Enhanced during Learning
We examined functional coupling between a priori ROIs and

known, anatomically connected regions. The HPC directly pro-

jects to ACC (Barbas and Blatt, 1995; Cavada et al., 2000);

likewise, the dorsal anterior caudate and the putamen receive

projections from dorsolateral prefrontal cortex (dlPFC) and the

pre- and primary motor cortices, respectively (K€unzle, 1975;

Selemon and Goldman-Rakic, 1985; Flaherty and Graybiel,

1994; McFarland and Haber, 2000; Haber et al., 2006).
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To investigate how functional interactions between these

regions support conditional memory-guided behavior, we

performed task-based, beta-series correlation analyses

(Rissman et al., 2004). A recent study in rodents using an

analogous task found increased coherence between the

HPC and mPFC during learning, relative to steady-state,

behavior (Tang et al., 2017). Thus, we examined functional

Figure 4. Prospective Putamen Activation

during Fixed Trials Is Related to Behavioral

Performance on Subsequent Trials When

Stimulus Is Repeated

(A) Correlations between preceding fixed-trial

activation and subsequent fixed-trial perfor-

mance for the same (e.g., fixed left / fixed left)

and changed (e.g., fixed left / fixed right) trial

pairs. A trend was observed between activation

in the hippocampus and the fixed-same pairs

(right), whereas no significant relationship was

observed in the same region for fixed-change

pairs (left).

(B and C) No significant correlation between

prior fixed activation and subsequent fixed per-

formance was found for the (B) anterior cingulate

cortex or (C) dorsal caudate in either change or

same pairs.

(D) A statistically significant positive correlation

was found for the putamen on fixed-same pairs

(right) but not for the fixed-change pairs (left).

Clouds along trend line represent the upper and

lower 95% confidence interval.

coupling between three regional pairs

during fixed trials preceding conditional

trials for periods of learning and non-

learning. To operationalize periods of

learning and non-learning, the derivative

of the learning curve was calculated

across conditional trials. Trials with

positive derivative values, representing

an increase in performance relative

to preceding trials, were considered

periods of learning. Conversely, periods

of non-learning were defined as trials

in which the derivative was either zero

or a negative value, constituting periods

of stable or decreased performance.

Separate beta series were created with

fixed trials preceding learning and

non-learning conditional trials; from

which, correlations between mean acti-

vations of anatomically defined ROIs

were calculated. Functional coupling

between the HPC and ACC was

enhanced during periods of learning

(positive derivative: 0.642 ± 0.043) rela-

tive to periods of non-learning (negative

and/or zero derivative: 0.577 ± 0.049),

t(19) = 2.397, p = 0.027, d = 0.44).

Conversely, no differences in functional

coupling were observed between periods of learning

(0.579 ± 0.045) and non-learning (0.579 ± 0.045) for

either the dorsal anterior caudate or the dlPFC (t(19) =

0.230, p = 0.821) or the putamen and pre- and primary motor

cortex (positive derivative: 0.716 ± 0.029; negative and/or

zero derivative: 0.681 ± 0.028, t(19) = 1.394, p = 0.79;

Figure 5).
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Intervening Baseline Trial Representational
Dissimilarity in the HPC and mPFC Did Not Correlate
with Behavioral Performance on Subsequent
Conditional Trials
To further elucidate mechanistic contributions of the HPC and

mPFC to prospective memory-guided behavior, we used a multi-

variate approach to evaluate possible content of HPC and mPFC

representations during baseline trials that fell between fixed and

conditional trials. The HPCwas anatomically delineated, whereas

mPFC voxels were defined with a hybrid functional-anatomical

mask (seeSTARMethods). If activations in these regions reflected

maintenanceof relevant associations until the conditional cuewas

presented, conditional performance should be enhanced when

pattern dissimilarity between the intervening baseline and the pre-

ceding fixed trials was low. In other words, if the pattern of HPC or

mPFC activation across voxels during intervening baseline trials

was similar to the pattern during typical, fixed, preceding, correct

conditional trials, similarities may reflect the maintenance of infor-

mation; thus, the degree to which such patterns shift would be

predictive of impaired performance. We found no relationship

between magnitude of pattern similarity for intervening baseline

activations with fixed trials preceding correct conditional activa-

tions and behavioral performance (HPC: r = 0.092, p = 0.70;

mPFC: r = 0.188, p = 0.43; Figure S5).

Separate Network Supports Successful Execution of
Current Conditional Decision
We found that execution of conditional associations is supported

by a wide network of cortical and subcortical regions that are

distinct from observed, prospective activations. We performed

a second exploratory whole-brain analysis to determine which

regions contribute to successful memory-guided behavior

during, rather than preceding, correct-conditional associative

trials. We compared differences in activation during correct-

conditional, compared with correct-fixed, trials (Table S1). We

observed greater activation for correct-conditional trials in

the bilateral caudate, dlPFC, superior parietal lobule (SPL),

anterior insular cortex, and cerebellum (Figure 6). These results

reveal a separate network of brain regions important for

concurrent-conditional trial performance (e.g., action selection),

which contributes to the execution of conditional, memory-

guided behavior, beyond those implicated in the preceding fixed

trials.

DISCUSSION

We investigated prospective, memory-guided behavior with a

conditional-associative learning task. Success on conditional

trials was dependent on the stimulus identity from the preceding

fixed trial. Using a combination of univariate, multivariate, and

connectivity analyses, we identified prospective activations in

a network related to successful future decision-making. In addi-

tion, a second, separate network associated with successful

execution of conditional memory-guided behavior was discov-

ered. These findings demonstrate memory-guided behavior is

supported by two distinct neurobiological circuits: one depen-

dent on the HPC, putamen, mPFC, and other cortical regions

that prospectively bias subsequent conditional decisions,

Figure 5. Prospective HPC-ACC Functional Correlations Are Enhanced during Learning

(A–C) Boxplots with overlaid swarm-plots represent distributions of correlations for periods of learning and non-learning between anatomically connected regions

of interest. Paired-sample t tests revealed only the hippocampus and anterior cingulate cortex (ACC) exhibited enhanced correlations as a function of learning (A),

which was not found for the dorsal caudate and dlPFC (B) or the putamen and motor cortex (C).

Cell Reports 28, 2541–2553, September 3, 2019 2547



whereas the second relies on the striatum, dlPFC, and other

cortical regions to use past knowledge for choice execution.

Prospective neural activity constitutes an important mecha-

nism of memory-guided behavior. As expected, HPC activation

during fixed trials preceding conditional trials differentiated con-

ditional-trial performance. Notably, in the current task, the HPC

is recruited for behavior with very short delays (3 s). Such find-

ings may arise from the highly associative nature of our task

because similar HPC outcomes have been identified for rela-

tional tasks with short delays (Hannula and Ranganath, 2008)

and reflect more temporally compressed contributions when

prospective mechanisms are engaged during deliberation (Re-

dish, 2016). An exploratory whole-brain analysis identified a

broad network of cortical and subcortical regions with prospec-

tive activity, including subregions of the mPFC (paracingulate

cortex extending into the BA10 and subgenual ACC), the poste-

rior cingulate cortex extending into the retrosplenial cortex, the

superior temporal cortex, the paracentral lobule, and the cere-

bellum. Surprisingly, the putamen exhibited a similar pattern in

activation. The influence of activation in the HPC and putamen

was not limited to conditional decisions. We also identified a

relationship between fixed-trial activation and subsequent

fixed-trial performance in the putamen when stimuli were

repeated. In the same analysis, a trend was also observed for

the HPC. To gain further insight into mechanistic contributions

of the HPC and mPFC, we followed our univariate analyses

with a multivariate approach. We used pattern-similarity analysis

to determine whether the content of the fixed trials was main-

tained during the interceding baseline trials. No evidence was

found to support a relationship between behavioral performance

on conditional trials after intervening baselines and representa-

tional similarities in either the HPC or mPFC. The relationships

between time, learning, and continuous measurement of perfor-

mance constitute important limitations.While themotivating goal

of our current study was to elucidate neurobiological mecha-

nisms of successful conditional memory guided behavior, these

mechanisms may evolve with experience. Future research

Figure 6. Separate Network Supports Suc-

cessful Execution of Current Conditional

Decision

Cortical and subcortical regions exhibiting greater

activation for correct conditional trials compared

with correct fixed trials after a whole-brain

exploratory analysis (FWE tfce-corrected p < 0.05).

Regions of activation included the bilateral

caudate, dorsolateral prefrontal cortex, pre-

supplementary motor area, anterior insula, supe-

rior parietal cortex, precuneus, and cerebellum.

should examine how learning across

time may alter observed neurobiological

mechanisms.

Our results extend previous findings

in both human and animal literature.

Recent studies have identified relation-

ships between prospective fMRI activa-

tion and choice. For example, in a study

that used a multistep, reward learning task, combined with

regionally decodable stimuli, prospective activation of second-

stage categories was positively correlated with the degree to

which participants used a model-based, relative to a model-

free, strategy (Doll et al., 2015). In a sequential learning task in

which regularity of adjacent items wasmanipulated, HPC activa-

tion correlated with forward entropy, an estimate of uncertainty

of upcoming stimulus conditional on the current one (Bornstein

and Daw, 2012). Lastly, activations in the HPC during encoding

have been shown to be correlated with the probability that an

item was remembered during a later decision phase (Gluth

et al., 2015). In the same studies, activations in the putamen

were associated with model-free prediction errors (Bornstein

and Daw, 2012; Doll et al., 2015) and conditional probability or

the degree of response preparation during a sequential learning

task (Bornstein et al., 2017). Prospective neural activity consti-

tutes a form of reactivation, which has long been thought to be

an important retrieval-related mechanism (Johnson et al.,

2009). In a recent action-based learning study, reactivation of

medial temporal lobe (MTL) for stimulus triads linked by predic-

tive actions were negatively correlated with stimulus-selective

visual-cortex activation (Hindy and Turk-Browne, 2016), sug-

gesting expectations of predictive actions lessen the necessity

of sensory processing. The HPC has also been shown to repre-

sent prospective rewards during a monetary-incentive encoding

task (Zeithamova et al., 2018), and prospective planning signals

in the HPC were related to one-shot paired-associate learning in

a spatial task (van Kesteren et al., 2018). Spatial navigation

studies in rodents have also provided evidence for the role of

prospective neural activity for decision-making in the HPC.

Awake sharp wave ripple (SWR) events in the HPC reinstate

sequential patterns of ‘‘place-cell’’ activity of both recent (Foster

and Wilson, 2006; Diba and Buzáki, 2007) and remote (Karlsson

and Frank, 2009; Gupta et al., 2010) experiences. Further, SWRs

are predictive of upcoming choices (Pfeiffer and Foster, 2013),

indicative of whether those choices will be subsequently correct

or incorrect (Singer et al., 2013). Disruptions of SWRs were
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sufficient to impair performance in a continuous alternation task

(Jadhav et al., 2012). In the current study, we observed greater

activation in the HPC and putamen on trials that preceded cor-

rect versus incorrect conditional, memory-guided trials, similar

to both results observed in rodents during an analogous

spatial-alternation task (Frank et al., 2000; Singer et al., 2013)

and statistical learning studies in humans (Bornstein and Daw,

2012). Altogether, and framed within the larger literature, our

results suggest the HPC and other regions have an important

role in memory representations prospectively guiding decision-

making.

The observed activations in our study may reflect a retrieval

process important for deliberation at the time of choice (Carr

et al., 2011). Evidence suggests prospective activation reflects

imagined future options important for upcoming decisions

(Addis et al., 2007; Yu and Frank, 2015); however, research in

prospective memory provides a compelling alternative. The

investigation of prospective memory has been performed within

a multiprocess framework that posits prospective remembering

is supported by either resource-demanding strategic monitoring

or a spontaneous retrieval mechanism (McDaniel and Einstein,

2000; Braver, 2012). Which mechanism prevails is thought to

be dependent on the contextual features, such as the task

structure (Einstein et al., 2005; Scullin et al., 2010). Many studies

provide evidence for a neurobiological mechanism centered on

the rPFC, supporting strategic monitoring (Burgess et al.,

2003, 2011; Gilbert et al., 2006; Simons et al., 2006; Okuda

et al., 2007; Gilbert, 2011; Benoit et al., 2012; Momennejad

and Haynes, 2012, 2013). For spontaneous retrieval, the HPC

system would be expected to have an important role (Einstein

et al., 2005). However, studies of transient responses to

prospective memory-target stimuli have not demonstrated

HPC activations (Reynolds et al., 2009; Beck et al., 2014).

Rather, bilateral HPC activation was observed during encoding

of prospective memory intentions (Gilbert, 2011). In the current

study, activation in the HPC and other structures during fixed tri-

als proceeding conditionals may reflect encoding of prospective

memories. Such an interpretation would be consistent with

computational models positing prospective memory results

from interactions between the prefrontal cortex and the HPC,

the latter being responsible for encoding associations between

action plans and future contexts (Cohen and O’Reilly, 1996).

Functional interactions between the HPC and ACC constitute

an important mechanism supporting memory-guided condi-

tional behavior modulated by learning. We observed prospec-

tive, functional coupling between the HPC and the ACC was

enhanced during learning compared with non-learning. Similar

differences were not found between either the dorsal anterior

caudate and dlPFC, or the putamen and pre- and primary motor

cortex. Previous human neuroimaging studies have shown

coupling between the HPC and mPFC has a central role in

memory-guided decision-making (Zeithamova et al., 2012a;

Gluth et al., 2015), memory updating and integration (van Keste-

ren et al., 2010; Preston and Eichenbaum 2013; Schlichting and

Preston, 2016), statistical learning of temporal community struc-

ture (Schapiro et al., 2016), and retrieval (Schedlbauer et al.,

2014; King et al., 2015). Much of the work in humans has rested

on the theory that mPFC guides HPC encoding and retrieval

(Preston and Eichenbaum, 2013). The results from our study

extend those observations to show such interactions are modifi-

able through learning. Functional coupling between the HPC and

themPFC in awake, behaving rodents has shown to be an impor-

tant mechanism in memory-guided behavior (Jones and Wilson,

2005a, 2005b; Benchenane et al., 2010; Remondes and Wilson,

2013; Brincat andMiller, 2015; Yu and Frank, 2015; Jadhav et al.,

2016; Guise and Shapiro, 2017; Tang et al., 2017). For example,

coupling of spike-timing and theta coherence increases at

choice points in mazes, with the degree of coherencemodulated

by the behavioral performance (Jones andWilson 2005a, 2005b;

Benchenane et al., 2010). We observed enhanced HPC-ACC

coupling during learning relative to non-learning periods, similar

to a recent rodent study (Tang et al., 2017). In our study, func-

tional interactions between the HPC and ACC may reflect a

mechanism by which the ACC modifies HPC activation to facili-

tate goal-directed behavior. Such a possibility is in line with

studies in rodents using a goal-directed paradigm (Guise and

Shapiro, 2017).

Activation in the dorsal anterior caudate and related cortical

structures (e.g., dlPFC, superior parietal lobule, anterior insula,

and precuneus) was associated with successful execution of

conditional, memory-guided behavior when compared with cor-

rect fixed-association trials. The dorsal anterior striatum repre-

sents currently relevant associations of goal-directed behavior.

The striatum has long been believed to support instrumental

behavior (Graybiel, 1995). Instrumental behavior is dissociable

into goal-directed and stimulus-bound or habitual control (Dick-

inson and Balleine, 1994), with each having been mapped to

different neurobiological circuits. Specifically, evidence from an-

imal studies suggests goal-directed behavior is mediated by

dorsomedial striatal circuits (Yin et al., 2005), whereas stim-

ulus-bound behavior is supported by dorsolateral circuits (Yin

and Knowlton, 2004). A similar functional subdivision has been

observed in primates along the anterior-posterior axis (Miyachi

et al., 1997, 2002). Neurons in the dorsal anterior caudate modu-

late firing as goal-directed associations are learned (Tremblay

et al., 1998; Blazquez et al., 2002;Miyachi et al., 2002; Hadj-Bou-

ziane and Boussaoud, 2003; Brasted and Wise, 2004), with pre-

ceding responses observed in the dlPFC (Pasupathy and Miller,

2005). Similar activations have been observed in humans during

instrumental tasks (O’Doherty et al., 2004; Tricomi et al., 2004). In

prospective-memory studies, associations between prospec-

tive-memory cues and specific actions share many features

with instrumental designs. Prior prospective-memory studies

have reported transient activation in response to prospective

memory-target cues across both cortical and subcortical

regions, findings that largely overlap with regions identified in

our current study (Simons et al., 2006; Reynolds et al., 2009;

McDaniel et al., 2013; Beck et al., 2014). Thus, activation in the

dorsal anterior caudate and affiliated cortical structures, for cor-

rect conditional greater than correct fixed associations, reflect

instrumental goal-directed associations at action selection.

CONCLUSIONS

Taken together, these findings provide evidence for comple-

mentary memory processes underlying successful, conditional,
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memory-guided behavior. We posit the first of these mecha-

nisms to represent a prospective encoding system that serves

to procure andmaintain multiple types of representations across

experience for future, conditional decisions that are dependent

on the HPC and related cortical structures. In addition, we pro-

pose a second conditional, memory-guided system that is reliant

on the striatum and affiliated cortex, which facilitates concurrent

use of past knowledge during choice deliberation. Our findings

illustrate successful conditional memory-guided decisions arise

from the involvement of multiple learning and memory systems.
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STAR+METHODS

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILBILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Aaron T.

Mattfeld (amattfel@fiu.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Twenty-seven right-handed volunteers performed a conditional visuo-motor associative learning task in a magnetic resonance

imaging scanner. All participants provided written informed consent in accordance with local Institutional Review Board require-

ments. Individuals were recruited from the Florida International University community and financially compensated. Six individuals

were excluded from the reported analyses. Three were removed for excessive motion (greater than 20% of time points were flagged

as outliers following our outlier detection procedures using 1 mm normalized frame-wise displacement and 3 standard deviations

above the mean signal intensity as thresholds). An additional three were removed for poor task performance (lower bound of the

95%confidence interval never exceeded chance performance). Lastly, one participant was removed as a result of experimenter error

– first image set was erroneously presented for all six runs. Final sample size was 20 participants (13 females; mean age = 20.82

years, SD = 1.78).

METHOD DETAILS

Behavioral Procedures
The conditional memory-guided associative learning task wasmodified from a visuomotor associative learning task (Law et al., 2005;

Kirwan et al., 2007; Mattfeld and Stark, 2011, 2015; Stark et al., 2018). The experiment was run using PsychoPy2 software (version

1.81.02; RRID: SCR_006571; Peirce, 2009) on a Dell PC computer (Windows 8). Stimuli were back-projected and viewed using an

adjustable mirror mounted on the head coil. Participants were presented three unique kaleidoscopic image sets. Each image set

was learned across two scanning runs. Participants completed 6 total runs. Each run lasted 6.67 minutes. Stimuli were presented

40 times during each run, for 80 total presentations across 2 runs, resulting in 240 learning stimulus trials per set. Individuals were

instructed to learn the association between each image and one of two concurrently presented boxes, which flanked the stimulus,

through trial-and-error. Two of three images were associated with either the left or right box exclusively, for which correct response

remained consistent across trials. We refer to these trials as fixed associative learning trials. The association for the third image, how-

ever, was conditional on the identity of the image from the preceding trial and thus could change across trials. We refer to these trials

as conditional associative learning trials (Figure 1A).

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

PsychoPy2 1.81.02 Peirce, 2009 https://www.psychopy.org

AFNI 16.3.18 Cox, 1996 https://afni.nimh.nih.gov

FSL 5.0.8 FMRIB; Smith et al., 2004;

Jenkinson et al., 2012

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

ANTS 2.1.0 Avants et al., 2008 http://stnava.github.io/ANTs

FreeSurfer 6.0.0 Fischl, 2012 https://surfer.nmr.mgh.harvard.edu

Nipype 1.0.0 dev0 Gorgolewski et al., 2016 https://nipype.readthedocs.io/en/latest/

MATLAB 2013B MathWorks https://www.mathworks.com/

SPSS 21 IBM SPSS Statistics http://www.ibm.com//www.ibm.com/products/

Learning (state-space) algorithm Smith et al., 2004 http://www.annecsmith.net/behaviorallearning.html

Data analysis scripts This paper https://github.com/madlab-fiu/cell_reports_CAT

Deposited Data

Conditional Association Dataset OpenNeuro.org https://openneuro.org/datasets/ds002078/versions/1.0.0
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Each learning trial (2500 ms duration) began with the presentation of a centrally located fixation cross for 700 ms, after which a

computer-generated kaleidoscopic image (Miyashita et al., 1991) flanked by empty boxes on both the right and left was presented

for 1000ms, during which participants were able to make their selection. Participants responded using their index finger to select the

left box and middle finger to select the right box. Responses were recorded using a MR-compatible response box. The chosen box

was highlighted to indicate selection. Deterministic feedback (green ‘‘Yes!,’’ red ‘‘No!,’’ or white ‘‘’’?) was provided for 800ms after the

response.

In addition to learning trials, 40 perceptual baseline (BL) trials were presented to serve as a temporal jitter between trial

types, distribute cognitive demand, and provide a reference for the fMRI signal. Sequence and timing of perceptual BL trials

was identical to learning trials (Figure 1B). During BL trials participants were presented with a random static pattern image

created through binarization of random values for each pixel of screen resolution (1280 3 800). Randomly generated pixel

values greater than 0.85 became white, while those below threshold became gray. Placed over this static background, a central

white fixation cross was presented, flanked on the left and right by two white outlined boxes. In identical fashion to the larger

image, contents of each box were also random static patterns (320 3 200); however, the binarization threshold to produce a

white pixel was considerably lower and, for target, vacillated as a function of performance. For the first BL trial, binarization

thresholds for target and foil were initially set at 0.55 and 0.65, respectively. Participants were tasked with identifying the

‘‘whiter’’ of the two boxes. If the participant responded correctly to seven out of the previous 10 trials, white threshold for

the target box would increase by 10% of that for the last trial, producing fewer white pixels and bringing the image closer to

the constant foil threshold of 0.65, thereby increasing task difficulty. Conversely, if response to fewer than five of the preceding

10 BL trials were correct, threshold decreased by 10% of the previous value, leading to a ‘‘whiter’’ target and easier

identification.

Prescan Training
All participants received training of 75 total trials (60 learning stimuli and 15 BL trials) using a practice set of three images (two fixed,

one conditional) specific to the training session. Training allowed participants to become acquainted with task nature and timing to

mitigate loss of trials due to nonresponse at the beginning of the first experimental run. Training was conducted on a MacBook Pro

using identical finger-response mapping as scanning session.

MRI Methods
Imaging data were acquired on a General Electric Discovery MR750 3T scanner (Waukesha, WI, USA) with a 32-channel head coil at

the University of Miami Neuroimaging Facility (Miami, FL). Functional images were obtained using a T2*-sensitive gradient echo pulse

sequence (42 interleaved axial slices, acquisition matrix = 96 3 96 mm, TR = 2000 ms, TE = 25 ms, flip angle = 75�, in-plane acqui-

sition resolution = 2.53 2.5 mm, FOV = 240 mm, slice thickness = 3 mm). For each experimental run, 200 whole brain volumes were

acquired. Acquisition of imaging data began after the fourth volume to permit stabilization of magnetic resonance signal. A high-res-

olution, three-dimensional magnetization-prepared rapid gradient echo sequence (MP-RAGE) was collected for purposes of core-

gistration and normalization (186 axial slices, voxel resolution = 1 mm isotropic, acquisition matrix = 256 3 256 mm, TR =

9.184 ms, TE = 3.68 ms, flip angle = 12�, FOV = 256 mm).

Data were preprocessed and analyzed using the following software packages: Analysis of Functional Neuroimages (AFNI

version 16.3.18; RRID: SCR_005927; Cox, 1996), FMRIB Software Library (FSL version 5.0.8; RRID: SCR_002823; Smith et al.,

2004; Jenkinson et al., 2012), FreeSurfer (FS version 6.0.0; RRID: SCR_001847; Fischl, 2012), Advanced Normalization Tools

(ANTs version 2.1.0; RRID: SCR_004757; Avants et al., 2008), and Neuroimaging in Python (Nipype version 1.0.0.dev0; RRID:

SCR_002502; Gorgolewski et al., 2016) pipeline. T1-weighted structural scans underwent cortical surface reconstruction and

cortical/subcortical segmentation. Surface reconstruction was visually inspected and errors were manually edited and resubmit-

ted. Functional data were first ‘despiked’, removing and replacing intensity outliers in the functional time series. We then per-

formed simultaneous slice timing and motion correction (Roche, 2011), aligning all functional volumes to the middle volume of

the first run. An affine transformation was calculated to co-register functional data to their structural scan. Motion and intensity

outlier time points (> 1 mm frame-wise-displacement; > 3 SD mean intensity) were identified. Functional data were spatially filtered

with a 5 mm kernel using SUSAN algorithm (FSL; Smith & Brady, 1997), which preserves the underlying structure by only aver-

aging local voxels with similar intensities. The last three volumes of each run were removed to eliminate scanner artifact observed

during preprocessing.

Anatomical images were skull-stripped and then registered to MNI-152 template via a rigid body transformation (FSL FLIRT;

DOF = 6). This step was used to minimize large differences in position across participants and generate a template close to

a commonly used reference. ANTs (Avants et al., 2008) software was used to create a study-specific template to

minimize normalization error for any given participant. Each participant’s skull-stripped brain was normalized using non-linear

symmetric diffeomorphic mapping implemented by ANTS. The resulting warps were applied to contrast parameter estimates

following fixed-effects modeling for subsequent group-level tests. To derive MNI coordinates presented in Table S1, the tem-

plate brain was warped to an MNI template using ANTS and resulting template-to-MNI warps were applied to the outputs from

randomize.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Anatomical Regions of Interest
Six anatomical regions of interest (ROIs) were bilaterally defined using each participant’s structural scan. The hippocampus, puta-

men, and pre/primary motor cortex (precentral, paracentral, caudal middle frontal, and opercularis labels) were defined by binarizing

segmentations from FreeSurfer aparc+aseg.mgz files. The anterior cingulate cortex was also defined using FreeSurfer segmentation

(rostral and caudal anterior cingulate labels). We chose to limit our region of interest in the mPFC to the anterior cingulate cortex;

admittedly, while the ventral medial prefrontal cortex also receives input from the hippocampal formation, this region was not

included due to substantial MRI signal drop-out. The dorsolateral prefrontal cortex was defined using the Lausanne Atlas. The dorsal

anterior caudate was manually segmented in accordance with anatomical landmarks outlined in Atlas of the Human Brain (Mai et al.,

1997): appearance and secession of the anterior commissure defined the rostral boundary, while the lateral ventricle served as the

medial edge and the internal capsule formed the lateral surface. All masks were back-projected to functional space for analysis.

Task-based fMRI Data Analysis
fMRI datawere analyzed using FSL based on principles of the general linearmodel.We used three separate univariatemodels at first-

level to evaluate memory-guided conditional behavior. All models included regressors of no interest which consisted of motion pa-

rameters (x, y, z translations; pitch, roll, yaw rotations), first and second derivatives of the motion parameters, normalized motion,

first, second, and third order Lagrange polynomials, as well as each outlier time-point that exceeded artifact detection thresholds.

In the first model, the regressors of interest consisted of fixed trials that immediately preceded both correct and incorrect conditional

trials. All other trial types (i.e., conditional, fixed trials that preceded fixed trials, and fixed trials that preceded baseline trials, baseline

trials) were modeled as a single regressor. Contrasts examined differences in activation between fixed trials that preceded correct

versus incorrect conditional trials. The second model included regressors of interest for correct and incorrect fixed and conditional

trials. The contrast of interest for the secondmodel was differences in activation for correct conditional versus correct fixed trials. The

third model included regressors of interest for sequential fixed trial pairs that either shared or changed stimulus from the first to the

second trial. The contrast of interest for the third model was differences in activation for the first fixed trial in fixed-same versus fixed-

change trial pairs. Event regressors were convolved with FSL’s double gamma hemodynamic response function with an onset coin-

ciding with the stimulus presentation and a duration of 3 s. Following first-level analyses, fixed effects analyses across experimental

runs were performed for each participant for the respective contrasts of interest. Contrast parameter estimates from fixed effects

analysis were normalized to the study specific template and group-level analyses were performed using FSL’s randomize

threshold-free cluster enhancement (tfce) one sample t test (p < 0.05).

Representational Similarity Analysis
A representational similarity analysis (RSA) was performed by adding one additional regressor to the firstmodel described in our task-

based fMRI analysis. The RSA model contained fixed trials that immediately preceded both correct and incorrect conditional trials,

and a new regressor for baseline trials that intervened between fixed and conditional trials as our regressors of interest, as well as

regressors of no interest common to our previous models. Similar to the first model, all other trial types (i.e., conditional, fixed trials

that preceded fixed trials, and fixed trials that preceded baseline trials, consecutive baseline trials) were modeled as a single regres-

sor. First-level analyses were conducted on unsmoothed data and followed by fixed effects analyses across experimental runs. We

calculated correlations between voxel-wise patterns of activation in anatomically defined HPC for fixed trials that preceded correct

conditionals versus baseline trials that intervened between fixed and conditional trials. We performed the same analysis using voxels

defined by our whole-brain exploratory analysis masked by regions anatomically defined as the medial prefrontal cortex – binarizing

Freesurfer labels for rostral and caudal anterior cingulate cortex, superior frontal cortex, and medial orbitofrontal cortex – to isolate

regions of themPFCmodulated by task. Using the resulting Pearson’s correlation coefficients, we calculated dissimilarity defined as:

1-r. We subsequently correlated our regional dissimilarity measures with behavioral performance during conditional trials that fol-

lowed the intervening baseline trials.

Beta-Series Functional Connectivity Analysis
A beta-series correlation method (Rissman et al., 2004) was used for our task-based functional connectivity analysis. We employed a

least-squares single (LSS) approach (Mumford et al., 2012) given our fast event-related design. Briefly, a separate general linear

model was run for each trial of interest. All first level models included a regressor for the single relevant trial, and all

remaining task and nuisance regressors with the relevant trial removed from its respective task regressor. Trials of interest were

defined by whether they preceded periods of learning or non-learning (conditional trials). We used a logistic regression algorithm

(Smith & Brown, 2003; Smith et al., 2004;Wirth et al., 2003), designed to assess learning as a dynamic process observed across trials,

to create unique learning curves for each conditional stimulus (MathWorks, 2012b). Utilizing binary responses (correct/incorrect), the

learning state process was calculated from the observed outcome of all experimental trials and served to indicate probability of a

correct response for any given trial: a metric of learning at each time point of the experimental run. The learning state was defined

by obtaining the first derivative of the learning curve for conditional stimuli. If the derivative value was positive, indicating an increase

in the probability of being correct relative to the previous trial, it was considered a learning trial. If the value was less than or equal to
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zero, representing a decrease or no change in performance, the trial was labeled a non-learning trial. Fixed trials preceding learning

and non-learning conditional trials were separately modeled and constructed into a beta-series. A priori regions of interest were

defined and the average beta-series from each region were correlated. The functional coupling during learning versus non-learning

periods was quantified by the degree to which the respective beta-series correlated.

DATA AND CODE AVAILABILITY

The raw magnetic resonance imaging (MRI) datasets generated during this study are available at OpenNEURO.org. The accession

number for the data reported in this paper is openneuro: ds002078. The code supporting the current study has been deposited in a

public repository on GitHub (https://github.com/madlab-fiu/cell_reports_CAT).
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