46 research outputs found

    STUDIES ON THE STRUCTURE AND FUNCTION OF THE TELEOST PSEUDOBRANCH

    Get PDF
    Four main types of pseudobranch were distinguished on the basis of their epithelial covering. The terms 'free', ‘semi-free’, 'covered' and 'buried' are used to describe these types. All pseudobranchs possess specific ‘pseudobranch type’ cells, characterised by an orderly arrangement of tubules around closely packed mitochondria. They also contain vacuoles which may play a role in osmoreception by causing changes in the size and shape of the cells. Another specialised cell type, similar to the gill 'chloride' cell was found in 'free' and 'semi-free' pseudobranchs of salt water fish. They are associated with smaller 'accessory' cells from which they are separated by 'leaky' junctions which may provide a structural basis for the proposed ion secretory nature of 'chloride type' cells. Ultrastructural changes in 'chloride type' and 'pseudobranch type' cells were noted under osmotic stress but the cells still remained distinguishable from each other, giving no reason to suggest that they were different forms of the same cell. The two other main cell types found in the pseudobranch epithelium were mucous and rodlet cells. The epithelial surface possesses numerous microridges which are thought to aid anchorage of mucous. The vascular system of the pseudobranch shows close similarities to that of the gill and contains a well developed arterio-venous pathway as well as an arterio-arterial system. Arterio-venous anastomoses were found between the efferent filament artery and the central venous sinus of the bass pseudobranch. The pseudobranch innervation is extremely complex. Morphological and denervation studies suggest an autonomic innervation and physiological evidence indicates the presence of at least two and possibly four types of receptor. The results of this study indicate that the pseudobranch has a number of inter-related functions associated with the development of specific cell types and a complex innervation linked directly or indirectly to the vascular system.THE MARINE BIOLOGICAL ASSOCIATIO

    Polymorphism in the tumour necrosis factor receptor II gene is associated with circulating levels of soluble tumour necrosis factor receptors in rheumatoid arthritis

    Get PDF
    Levels of soluble tumour necrosis factor receptors (sTNFRs) are elevated in the circulation of patients with rheumatoid arthritis (RA). Although these receptors can act as natural inhibitors of tumour necrosis factor-α, levels of sTNFRs in RA appear to be insufficient to prevent tumour necrosis factor-α induced inflammation. The factors that regulate circulating levels of sTNFRs are unclear, but polymorphisms in the tumour necrosis factor receptor genes may play a role. We investigated the relationship between polymorphisms in the tumour necrosis factor receptor I (TNF-RI) and II (TNF-RII) genes and levels of sTNFRs in two groups of Caucasian RA patients: one with early (disease duration ≤2 years; n = 103) and one with established disease (disease duration ≥5 years; n = 151). PCR restriction fragment length polymorphism analysis was used to genotype patients for the A36G polymorphism in the TNF-RI gene and the T676G polymorphism in TNF-RII. Levels of sTNFRs were measured using ELISA. We also isolated T cells from peripheral blood of 58 patients with established RA with known TNF-R genotypes, and release of sTNFRs into the culture medium was measured in cells incubated with or without phytohaemagglutinin. Serum levels of the two sTNFRs (sTNF-RI and sTNF-RII) were positively correlated in both populations, and the level of each sTNFR was significantly higher in the patients with established disease (P < 0.0001). Multiple regression analyses corrected for age, sex and disease duration revealed a significant trend toward decreasing sTNF-RI and sTNF-RII levels across the TNF-RII genotypes (TT > TG > GG) of patients with established disease (P for trend = 0.01 and P for trend = 0.03, respectively). A similar nonsignificant trend was seen for early disease. No relationship with the TNF-RI A36G polymorphism was observed. sTNFRs released by isolated T cells exhibited a similar trend toward decreasing levels according to TNF-RII genotype, although only the association with levels of sTNF-RII was significant. Strong correlations were found between levels of circulating sTNFRs and levels released by T cells in vitro. Our data indicate that the T676G polymorphism in TNF-RII is associated with levels of sTNFRs released from peripheral blood T cells, and with circulating levels of sTNFR in patients with RA

    An initial investigation into endothelial CC chemokine expression in the human rheumatoid synovium

    Get PDF
    Rheumatoid arthritis (RA) is a destructive and chronic autoimmune inflammatory disease. Synovial inflammation is a major feature of RA and is associated with leukocyte recruitment. Leukocytes cross the endothelial cells (ECs) into the synovial tissue and fluid and this migration is mediated via a range of chemokines and adhesion molecules on the ECs. As important mediators of leukocyte extravasation, a number of chemokines from each of the chemokine families have been established as expressed in the RA joint. However, as little information is available on which chemokines are expressed/presented by the ECs themselves, the purpose of the study was to ascertain which of the CC chemokines were localised in RA ECs. Immunofluoresence was used to assess the presence of the CC-family chemokines in RA synovial ECs using von-Willebrand factor (VWF) as a pan-endothelial marker and a range of human chemokine antibodies. The percentage of VWF positive vessels which were positive for the chemokines was determined. The presence of the four most highly expressed novel chemokines were further investigated in non-RA synovial ECs and the sera and synovial fluid (SF) from patients with RA and osteoarthritis (OA). Statistical analysis of immunofluorescence data was carried out by Student's t-test. For analysis of ELISA data, Kruskal-Wallis ANOVA followed by Dunn's multiple comparison test was utilised to analyse differences in sera and SF levels for each chemokine between RA and OA. Spearman rank correlations of sera and SF chemokine levels with a range of clinical variables were also performed. Chemokine detection varied, the least abundant being CCL27 which was present in 8.3% of RA blood vessels and the most abundant being CCL19 which was present in 80%. Of the 26 chemokines studied, 19 have not been previously observed in RA ECs. Four of these novel chemokines, namely CCL7, CCL14, CCL16 and CCL22 were present on ≥60% of vessels. CCL14 and CCL22 were shown to be increased in RA ECs compared to non-RA ECs, p=0.0041 and p=0.014 respectively. EC chemokines CCL7, CCL14, CCL16 and CCL22 also occurred in RA synovial fluid and sera as established by ELISA. CCL7 was shown to be significantly increased in sera and SF from RA patients compared to that from osteoarthritis (OA) patients (p<0.01), and to have a highly significant correlation with the level of anti-CCP (R=0.93, p=0.001). Less abundant chemokines shown to be present in RA ECs were CCL1-3, CCL5, CCL10-13, CCL15, CCL17, CCL18, CCL20, CCL21 and CCL23-28. In conclusion, this initial study is the first to show the presence of a number of CC chemokines in RA ECs. It provides evidence that further validation and investigation into the presence and functionality of these novel chemokines expressed at RA synovial ECs may be warranted

    Genome-wide profiling in treatment-naive early rheumatoid arthritis reveals DNA methylome changes in T and B lymphocytes

    Get PDF
    AIM: Although aberrant DNA methylation has been described in rheumatoid arthritis (RA), no studies have interrogated this epigenetic modification in early disease. Following recent investigations of T- and B-lymphocytes in established disease, we now characterize in these cell populations genome-wide DNA methylation in treatment-naive patients with early RA. PATIENTS & METHODS: HumanMethylation450 BeadChips were used to examine genome-wide DNA methylation in lymphocyte populations from 23 early RA patients and 11 healthy individuals. RESULTS: Approximately 2000 CpGs in each cell type were differentially methylated in early RA. Clustering analysis identified a novel methylation signature in each cell type (150 sites in T-lymphocytes, 113 sites in B-lymphocytes) that clustered all patients separately from controls. A subset of sites differentially methylated in early RA displayed similar changes in established disease. CONCLUSION: Treatment-naive early RA patients display novel disease-specific DNA methylation aberrations, supporting a potential role for these changes in the development of RA

    Epigenome-wide profiling identifies significant differences in DNA methylation between matched-pairs of T- and B-lymphocytes from healthy individuals

    Get PDF
    Multiple reports now describe changes to the DNA methylome in rheumatoid arthritis and in many cases have analyzed methylation in mixed cell populations from whole blood. However, these approaches may preclude the identification of cell type-specific methylation, which may subsequently bias identification of disease-specific changes. To address this possibility, we conducted genome-wide DNA methylation profiling using HumanMethylation450 BeadChips to identify differences within matched pairs of T-lymphocytes and B-lymphocytes isolated from the peripheral blood of 10 healthy females. Array data were processed and differential methylation identified using NIMBL software. Validation of array data was performed by bisulfite Pyrosequencing. Genome-wide DNA methylation was initially determined by analysis of LINE-1 sequences and was higher in B-lymphocytes than matched T-lymphocytes (69.8 vs. 65.2%, p ≤ 0.01). Pairwise analysis identified 679 CpGs, representing 250 genes, which were differentially methylated between T-lymphocytes and B-lymphocytes. The majority of sites (76.6%) were hypermethylated in B-lymphocytes. Pyrosequencing of selected candidates confirmed the array data in all cases. Hierarchical clustering revealed perfect segregation of samples into two distinct clusters based on cell type. Differentially methylated genes showed enrichment for biological functions/pathways associated with leukocytes and T-lymphocytes. Our work for the first time shows that T-lymphocytes and B-lymphocytes possess intrinsic differences in DNA methylation within a restricted set of functionally-related genes. These data provide a foundation for investigating DNA methylation in diseases in which these cell types play important and distinct roles

    DNA methylation at diagnosis is associated with response to disease-modifying drugs in early rheumatoid arthritis

    Get PDF
    Aim: A proof-of-concept study to explore whether DNA methylation at first diagnosis is associated with response to disease-modifying antirheumatic drugs (DMARDs) in patients with early rheumatoid arthritis (RA). Patients & methods: DNA methylation was quantified in T-lymphocytes from 46 treatment-naive patients using HumanMethylation450 BeadChips. Treatment response was determined in 6 months using the European League Against Rheumatism (EULAR) response criteria. Results: Initial filtering identified 21 cytosine-phosphate-guanines (CpGs) that were differentially methylated between responders and nonresponders. After conservative adjustment for multiple testing, six sites remained statistically significant, of which four showed high sensitivity and/or specificity (?75%) for response to treatment. Moreover, methylation at two sites in combination was the strongest factor associated with response (80.0% sensitivity, 90.9% specificity, AUC 0.85). Conclusion: DNA methylation at diagnosis is associated with disease-modifying antirheumatic drug treatment response in early RA

    Cytokines and Inflammatory Mediators [30-39]: 30. The LPS Stimulated Production of Interleukin-10 is not Associated with -819C/T and -592C/A Promoter Polymorphisms in Healthy Indian Subjects

    Get PDF
    Background: Interleukin-10 is a pivotal immunoregulatory cytokine with pleiotropic effects on the immune system. IL-10 promoter polymorphisms have been associated with disease susceptibility and the ability to secrete IL-10 in vitro. We suspected that the association of the widely studied -819C/T and -592C/A polymorphisms with the IL-10 production might vary between ethnic groups. Therefore, we examined the association of -819 C/T and -592 C/A promoter polymorphisms with in vitro LPS stimulated secretion of IL-10 in normal healthy Indian volunteers. Methods: Peripheral blood was collected from 103 healthy volunteers and diluted whole blood cultures were set up with 100 ng/ml of LPS as stimulant: supernatant was collected at 24 h and IL-10 levels were assayed by ELISA. Genotyping was done for -819C/T polymorphism in 101 individuals and -592C/A polymorphism in 68 individuals by polymerase chain reaction followed by RFLP. The differences in IL-10 production between the genotypes were analysed by ANOVA. Results: There were 30, 47 and 24 individuals with the CC, CT and TT genotypes with a minor allele (T) frequency of 47% for the -819C/T polymorphism. The CC and TT genotypes at position -819 were strongly associated with CC and AA genotypes at -592 position suggestive of strong linkage disequilibrium. There was no association between the -819 genotype and the in vitro LPS stimulated IL-10 levels. Conclusions: The -819C/T and the -592 C/A polymorphisms of the IL-10 promoter region are not significantly associated with LPS stimulated IL-10 production healthy Indian subjects. Disclosure statement: All authors have declared no conflicts of interes

    Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility

    Get PDF
    Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes

    The role of parvovirus B19 and the immune response in the pathogenesis of acute leukemia

    Get PDF
    In this article, we review the evidence suggesting a possible role for B19 virus in the pathogenesis of a subset of cases of acute leukemia. Human parvovirus B19 infection may complicate the clinical course of patients with acute leukemia and may also precede the development of acute leukemia by up to 180days. Parvovirus B19 targets erythroblasts in the bone marrow and may cause aplastic crisis in patients with shortened-red cell survival. Aplastic crisis represents a prodrome of acute lymphoblastic leukemia in 2% patients. There is a significant overlap between those HLA classes I and II alleles that are associated with a vigorous immune response and development of symptoms during B19 infection and those HLA alleles that predispose to development of acute leukemia. Acute symptomatic B19 infection is associated with low circulating IL-10 consistent with a vigorous immune response; deficient IL-10 production at birth was recently found to be associated with subsequent development of acute leukemia. Anti-B19 IgG has been associated with a particular profile of methylation of human cancer genes in patients with acute leukemia, suggesting an additional hit and run mechanism. The proposed role for parvovirus B19 in the pathogenesis of acute leukemia fits well with the delayed infection hypothesis and with the two-step mutation model, which describes carriage of the first mutation prior to birth, followed by suppression of hematopoiesis, which allows rapid proliferation of cells harboring the first mutation, acquisition of a second activating mutation, and expansion of cells carrying both mutations, resulting in acute leukemia. © 2015 John Wiley and Sons, Ltd
    corecore