13 research outputs found

    Vortex-induced nonlinearity and the effects of ion irradiation on the high-frequency response of NbTi films

    Get PDF
    The microwave response of superconducting devices can be affected by nonlinearity effects of both intrinsic and extrinsic origin. In this study, we report on the nonlinear behavior of NbTi microwave resonators, in the presence of dc magnetic fields up to 4 T. The aim of this work is to characterize the vortex-induced nonlinearity, which in these conditions of frequency (11 GHz) and fields is expected to give the major contribution to dissipation, when the circulating rf current exceeds a given threshold. Nonlinearity is investigated by analyzing -degradation and resonance curve distortion as a function of the input rf power, while the emergence of sharp discontinuities is associated to the existence of an rf limiting current density. The current densities corresponding to the onset of these features are compared to the critical current density from dc measurements, helping us to outline a comprehensive picture. Moreover, the pinning constant was extracted as a function of temperature by means of a Gittleman–Rosenblum analysis, revealing the prominent role of type pinning. We also analyzed the effects of introducing controlled artificial disorder and pinning sites through 1.5-MeV proton irradiation. After irradiation, we observed an increase of both the pinning constant and the in-field nonlinearity threshold and limiting current

    Results of Iliac Branch Devices in Octogenarians Within the pELVIS Registry

    Get PDF
    Purpose:To evaluate if the elderly could benefit from the implantation of iliac branch devices (IBDs) to preserve the patency of the internal iliac artery (IIA) in aneurysms involving the iliac bifurcation.Materials and Methods:From January 2005 to April 2017, 804 patients enrolled in the pELVIS registry underwent endovascular aneurysm repair with 910 IBDs due to aneurysmal involvement of the iliac bifurcation. Among the 804 patients, 157 (19.5%) were octogenarians (mean age 82.9 +/- 2.5 years; 157 men) with 171 target IIAs for preservation. Outcomes at 30 days included technical success, death, conversion to open surgery, and major complications. Outcomes evaluated in follow-up were patency of the IBD and target vessels, type I and type III endoleaks, aneurysm-related reinterventions, aneurysm-related death, and overall patient survival. Kaplan-Meier analyses were employed to evaluate the late outcome measures; the estimates are presented with the 95% confidence interval (CI).Results:Technical success was 99.4% with no intraoperative conversions or deaths (1 bridging stent could not be implanted, and the IIA was sacrificed). Perioperative mortality was 1.9%. The overall perioperative aneurysm-related complication rate was 8.9% (14/157), with an early reintervention rate of 5.1% (8/157). Median postoperative radiological and clinical follow-up were 21.8 months (range 1-127) and 29.3 months (range 1-127), respectively. Estimated rates of freedom from occlusion of the IBD, the IIA, and the external iliac artery at 60 months were 97.7% (95% CI 96.1% to 99.3%), 97.3% (95% CI 95.7% to 98.9%), and 98.6% (95% CI 97% to 99.9%), respectively. Estimated rates of freedom from type I and type III endoleaks and device migration at 60 months were 90.9% (95% CI 87% to 94.3%), 98.7% (95% CI 97.5% to 99.8%), and 98% (95% CI 96.4% to 99.6%), respectively. Freedom from all cause reintervention at 60 months was 87.4% (95% CI 82.6% to 92.2%). The estimated overall survival rate at 60 months was 59% (95% CI 52.4% to 65.6%).Conclusion:IBD implantation in octogenarians provided acceptable perioperative mortality and morbidity rates, with satisfying long-term freedom from IBD-related complications and should be considered a feasible repair option for selected elderly patients affected by aneurysms involving the iliac bifurcation

    Orthodontic Extrusion vs. Surgical Extrusion to Rehabilitate Severely Damaged Teeth: A Literature Review

    No full text
    The need to rehabilitate severely compromised teeth is frequent in daily clinical practice. Tooth extraction and replacement with dental implant represents a common treatment choice. However, the survival rate for implants is inferior to teeth, even if severely damaged but properly treated. In order to reestablish a physiological supracrestal tissue attachment of damaged teeth and to arrange an efficient ferrule effect, three options can be considered: crown lengthening, orthodontic extrusion and surgical extrusion. Crown lengthening is considered an invasive technique that causes the removal of part of the bony support, while both orthodontic and surgical extrusion can avoid this inconvenience and can be used successfully in the treatment of severely damaged teeth. The aim of the present narrative review is to compare advantages, disadvantages, time of therapy required, contraindications and complications of both techniques

    Vortex dynamics in NbTi films at high frequency and high DC magnetic fields

    No full text
    Abstract We report on the characterization of NbTi films at \sim ∼ 11 GHz and in DC magnetic fields up to 4 T, performed by means of the coplanar waveguide resonator technique, providing quantitative information about the penetration depth, the complex impedance, and the vortex-motion-induced complex resistivity. This kind of characterization is essential for the development of radiofrequency cavity technology. To access the vortex-pinning parameters, the complex impedance was analyzed within the formalism of the Campbell penetration depth. Measurements in this frequency range allowed us to determine the complete set of vortex-pinning parameters and the flux flow resistivity, both analyzed and discussed in the framework of high-frequency vortex dynamics models. The analysis also benefits from the comparison with results obtained by a dielectric-loaded resonator technique on similar samples and by other ancillary structural and electromagnetic characterization techniques that provide us with a comprehensive picture of the material. It turns out that the normalized flux flow resistivity follows remarkably well the trend predicted by the time dependent Ginzburg-Landau theory, while the pinning constant exhibits a decreasing trend with the field which points to a collective pinning regime

    Intranasal delivery of mesenchymal stem cell\u2010derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer's disease

    No full text
    The critical role of neuroinflammation in favoring and accelerating the pathogenic process in Alzheimer's disease (AD) increased the need to target the cerebral innate immune cells as a potential therapeutic strategy to slow down the disease progression. In this scenario, mesenchymal stem cells (MSCs) have risen considerable interest thanks to their immunomodulatory properties, which have been largely ascribed to the release of extracellular vesicles (EVs), namely exosomes and microvesicles. Indeed, the beneficial effects of MSC\u2010EVs in regulating the inflammatory response have been reported in different AD mouse models, upon chronic intravenous or intracerebroventricular administration. In this study, we use the triple\u2010transgenic 3xTg mice showing for the first time that the intranasal route of administration of EVs, derived from cytokine\u2010preconditioned MSCs, was able to induce immunomodulatory and neuroprotective effects in AD. MSC\u2010EVs reached the brain, where they dampened the activation of microglia cells and increased dendritic spine density. MSC\u2010EVs polarized in\u2009vitro murine primary microglia toward an anti\u2010inflammatory phenotype suggesting that the neuroprotective effects observed in transgenic mice could result from a positive modulation of the inflammatory status. The possibility to administer MSC\u2010EVs through a noninvasive route and the demonstration of their anti\u2010inflammatory efficacy might accelerate the chance of a translational exploitation of MSC\u2010EVs in AD
    corecore