93 research outputs found

    Efficient Multistriding of Large Non-deterministic Finite State Automata for Deep Packet Inspection

    Get PDF
    Multistride automata speed up input matching because each multistriding transformation halves the size of the input string, leading to a potential 2x speedup. However, up to now little effort has been spent in optimizing the building process of multistride automata, with the result that current algorithms cannot be applied to real-life, large automata such as the ones used in commercial IDSs, because the time and the memory space needed to create the new automaton quickly becomes unfeasible. In this paper, new algorithms for efficient building of multistride NFAs for packet inspection are presented, explaining how these new techniques can outperform the previous algorithms in terms of required time and memory usag

    Tell Me What You Waste and I’ll Tell You Who You Are: An Eight-Country Comparison of Consumers’ Food Waste Habits

    Get PDF
    Using an original survey conducted in eight countries in 2021 (Canada, China, Germany, Italy, Russia, Spain, the UK, and the USA), this study explored the relationship between household food waste and dietary habits through a cross-country comparative perspective. In total, 8000 questionnaires were recorded from samples representative of the adult population of each country through an online survey conducted between the 13th and the 24th of August. The questionnaires were developed from the Waste Watcher International Observatory on Food and Sustainability, an international study of the social, behavioral, and lifestyle dynamics behind household food waste. The relationships between the per capita self-reported amount of food waste (expressed in kilocalories) and self-declared dietary habits (traditional, healthy and sustainable, vegetarian, smart, and confused) were estimated using multiple linear regression models. The results showed that smart diets are associated with higher values of food waste in Canada, Spain, the UK, and the USA. Vegetarian diets are associated with lower food waste values in China, Germany, the UK, and the USA, but not in Italy, Russia, and Spain. The share of the population adopting a smart diet was, on average, 2.7% of the sample; therefore, interventions for food waste reduction should focus on these specific types of consumers, who are often associated with larger amounts of food waste

    Scalable Algorithms for NFA Multi-Striding and NFA-Based Deep Packet Inspection on GPUs

    Get PDF
    Finite state automata (FSA) are used by many network processing applications to match complex sets of regular expressions in network packets. In order to make FSA-based matching possible even at the ever-increasing speed of modern networks, multi-striding has been introduced. This technique increases input parallelism by transforming the classical FSA that consumes input byte by byte into an equivalent one that consumes input in larger units. However, the algorithms used today for this transformation are so complex that they often result unfeasible for large and complex rule sets. This paper presents a set of new algorithms that extend the applicability of multi-striding to complex rule sets. These algorithms can transform non-deterministic finite automata (NFA) into their multi-stride form with reduced memory and time requirements. Moreover, they exploit the massive parallelism of graphical processing units for NFA-based matching. The final result is a boost of the overall processing speed on typical regex-based packet processing applications, with a speedup of almost one order of magnitude compared to the current state-of-the-art algorithms

    Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data

    Get PDF
    BackgroundThe correct identification of differentially abundant microbial taxa between experimental conditions is a methodological and computational challenge. Recent work has produced methods to deal with the high sparsity and compositionality characteristic of microbiome data, but independent benchmarks comparing these to alternatives developed for RNA-seq data analysis are lacking.ResultsWe compare methods developed for single-cell and bulk RNA-seq, and specifically for microbiome data, in terms of suitability of distributional assumptions, ability to control false discoveries, concordance, power, and correct identification of differentially abundant genera. We benchmark these methods using 100 manually curated datasets from 16S and whole metagenome shotgun sequencing.ConclusionsThe multivariate and compositional methods developed specifically for microbiome analysis did not outperform univariate methods developed for differential expression analysis of RNA-seq data. We recommend a careful exploratory data analysis prior to application of any inferential model and we present a framework to help scientists make an informed choice of analysis methods in a dataset-specific manner

    A Framework for eBPF-Based Network Functions in an Era of Microservices

    Get PDF
    By moving network functionality from dedicated hardware to software running on end-hosts, Network Functions Virtualization (NFV) pledges the benefits of cloud computing to packet processing. While most of the NFV frameworks today rely on kernel-bypass approaches, no attention has been given to kernel packet processing, which has always proved hard to evolve and to program. In this article, we present Polycube, a software framework whose main goal is to bring the power of NFV to in-kernel packet processing applications, enabling a level of flexibility and customization that was unthinkable before. Polycube enables the creation of arbitrary and complex network function chains, where each function can include an efficient in-kernel data plane and a flexible user-space control plane with strong characteristics of isolation, persistence, and composability. Polycube network functions, called Cubes, can be dynamically generated and injected into the kernel networking stack, without requiring custom kernels or specific kernel modules, simplifying the debugging and introspection, which are two fundamental properties in recent cloud environments. We validate the framework by showing significant improvements over existing applications, and we prove the generality of the Polycube programming model through the implementation of complex use cases such as a network provider for Kubernetes

    A New Paradigm to Address Threats for Virtualized Services

    Get PDF
    With the uptaking of virtualization technologies and the growing usage of public cloud infrastructures, an ever larger number of applications run outside of the traditional enterprise’s perimeter, and require new security paradigms that fit the typical agility and elasticity of cloud models in service creation and management. Though some recent proposals have integrated security appliances in the logical application topology, we argue that this approach is sub-optimal. Indeed, we believe that embedding security agents in virtualization containers and delegating the control logic to the software orchestrator provides a much more effective, flexible, and scalable solution to the problem. In this paper, we motivate our mindset and outline a novel framework for assessing cyber-threats of virtualized applications and services. We also review existing technologies that build the foundation of our proposal, which we are going to develop in the context of a joint research project

    Multi-Complexity-Loss DNAS for Energy-Efficient and Memory-Constrained Deep Neural Networks

    Full text link
    Neural Architecture Search (NAS) is increasingly popular to automatically explore the accuracy versus computational complexity trade-off of Deep Learning (DL) architectures. When targeting tiny edge devices, the main challenge for DL deployment is matching the tight memory constraints, hence most NAS algorithms consider model size as the complexity metric. Other methods reduce the energy or latency of DL models by trading off accuracy and number of inference operations. Energy and memory are rarely considered simultaneously, in particular by low-search-cost Differentiable NAS (DNAS) solutions. We overcome this limitation proposing the first DNAS that directly addresses the most realistic scenario from a designer's perspective: the co-optimization of accuracy and energy (or latency) under a memory constraint, determined by the target HW. We do so by combining two complexity-dependent loss functions during training, with independent strength. Testing on three edge-relevant tasks from the MLPerf Tiny benchmark suite, we obtain rich Pareto sets of architectures in the energy vs. accuracy space, with memory footprints constraints spanning from 75% to 6.25% of the baseline networks. When deployed on a commercial edge device, the STM NUCLEO-H743ZI2, our networks span a range of 2.18x in energy consumption and 4.04% in accuracy for the same memory constraint, and reduce energy by up to 2.2x with negligible accuracy drop with respect to the baseline.Comment: Accepted for publication at the ISLPED 2022 ACM/IEEE International Symposium on Low Power Electronics and Desig

    Creating Complex Network Services with eBPF: Experience and Lessons Learned

    Get PDF
    The extended Berkeley Packet Filter (eBPF) is a recent technology available in the Linux kernel that enables flexible data processing. However, so far the eBPF was mainly used for monitoring tasks such as memory, CPU, page faults, traffic, and more, with a few examples of traditional network services, e.g., that modify the data in transit. In fact, the creation of complex network functions that go beyond simple proof-of-concept data plane applications has proven to be challenging due to the several limitations of this technology, but at the same time very promising due to some characteristics (e.g., dynamic recompilation of the source code) that are not available elsewhere. Based on our experience, this paper presents the most promising characteristics of this technology and the main encountered limitations, and we envision some solutions that can mitigate the latter. We also summarize the most important lessons learned while exploiting eBPF to create complex network functions and, finally, we provide a quantitative characterization of the most significant aspects of this technology

    Causation as Folk Science (Italian Translation)

    Get PDF
    I deny that the world is fundamentally causal, deriving the skepticism on non-Humean grounds from our enduring failures to find a contingent, universal principle of causality that holds true of our science. I explain the prevalence and fertility of causal notions in science by arguing that a causal character for many sciences can be recovered, when they are restricted to appropriately hospitable domains. There they conform to a loose collection of causal notions that form a folk science of causation. This recovery of causation exploits the same generative power of reduction relations that allows us to recover gravity as a force from Einstein's general relativity and heat as a conserved fluid, the caloric, from modern thermal physics, when each theory is restricted to appropriate domains. Causes are real in science to the same degree as caloric and gravitational forces
    corecore