
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Creating Complex Network Services with eBPF: Experience and Lessons Learned / Miano, Sebastiano; Bertrone,
Matteo; Risso, FULVIO GIOVANNI OTTAVIO; Tumolo, Massimo; VASQUEZ BERNAL, Mauricio. - STAMPA. - (2018).
((Intervento presentato al convegno IEEE International Conference on High Performance Switching and Routing (HPSR
2018) tenutosi a Bucarest, Romania nel June 2018.

Original

Creating Complex Network Services with eBPF: Experience and Lessons Learned

ieee

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2712562 since: 2018-09-11T00:19:40Z

IEEE

Creating Complex Network Services with eBPF:
Experience and Lessons Learned

Sebastiano Miano∗, Matteo Bertrone∗, Fulvio Risso∗, Massimo Tumolo∗, Mauricio Vásquez Bernal∗
∗Politecnico di Torino, Department of Computer and Control Engineering, Torino, 10129, Italy

Abstract—The extended Berkeley Packet Filter (eBPF) is a
recent technology available in the Linux kernel that enables
flexible data processing. However, so far the eBPF was mainly
used for monitoring tasks such as memory, CPU, page faults,
traffic, and more, with a few examples of traditional network
services, e.g., that modify the data in transit. In fact, the creation
of complex network functions that go beyond simple proof-of-
concept data plane applications has proven to be challenging
due to the several limitations of this technology, but at the same
time very promising due to some characteristics (e.g., dynamic
recompilation of the source code) that are not available elsewhere.
Based on our experience, this paper presents the most promising
characteristics of this technology and the main encountered
limitations, and we envision some solutions that can mitigate the
latter. We also summarize the most important lessons learned
while exploiting eBPF to create complex network functions and,
finally, we provide a quantitative characterization of the most
significant aspects of this technology.

Index Terms—eBPF, XDP, Linux, network functions, NFV,
dataplane.

I. INTRODUCTION

The extended Berkeley Packet Filter (eBPF) is a recent
technology that enables flexible data processing thanks to the
capability to inject new code in the Linux kernel at run-time,
which is fired each time a given event occurs, e.g., a packet
is received. While its ancestor, the Berkeley Packet Filter
(BPF) was used mainly to create packet filtering programs,
eBPF has been successfully used primarily in monitoring tasks.
Surprisingly, its usage in traditional network applications, such
as data plane services, has been less intense.

In fact, the creation of complex network functions that go
beyond simple proof-of-concept data plane applications has
proven to be challenging, due to the several limitations of
this technology, although it is evolving fast, as shown by the
significant number of patches and new features added almost
daily in the Linux kernel. In addition, eBPF is not (yet) backed
by a rich ecosystem of tools and libraries aimed at simplifying
the life of potential developers; the BPF Compiler Collection
(bcc) [1] is more oriented to tracing than packet manipulation.

However, eBPF is very promising due to some charac-
teristics that can hardly be found all together, such as the
capability to execute code directly in the vanilla Linux kernel,
hence without the necessity to install any additional kernel
module; the possibility to compile and inject dynamically the
code; the capability to support arbitrary service chains; the
integration with the Linux eXpress Data Path (XDP) for early
(and efficient) access to incoming network packets. At the
same time, eBPF is known for some limitations such as limited

program size, limited support for loops, and more, which may
impair its capacity to create powerful networking programs.

This paper presents our experience in developing complex
network services with eBPF and shows the most promising
characteristics of this technology as well as the main encoun-
tered limitations, as they appear in everyday life of a typical
developer. This paper will discuss the actual importance of
the above limitations with respect to the necessity to create
complex network applications and the possible solutions (if
any). Finally, it will also discuss some of the peculiar advan-
tages of this platform, backed by experimental evidence taken
from our services. In the end, this paper ponders advantages
and limits of the eBPF technology, analyzing its suitability
as a platform for the development of future complex network
services targeting mainly virtualized environments.

This paper is structured as follows. Section II presents a
high-level overview of the eBPF. Section III represents the
central part of the paper, highlighting our experience when
coping with different aspects of eBPF, and the main lessons
learned. Finally, Section IV provides the necessary evidence
to the previous findings and Section V concludes the paper.

II. BACKGROUND

The Berkeley Packet Filter (BPF) is an in-kernel virtual
machine for packet filtering that has been deeply revisited
starting from 2013 and is now known as extended BPF (eBPF).
In addition to several architectural improvements, eBPF in-
troduces the capability of handling generic event processing
in kernel, JIT compiling for increased performance, stateful
processing using maps, and libraries (helpers) to handle more
complex tasks, available within the kernel.

eBPF allows an user-space application to inject code in
the kernel at runtime, i.e., without recompiling the kernel or
installing any optional kernel module. eBPF programs can be
either written using eBPF assembly instructions and converted
to bytecode using bpf_asm utility, or in restricted C and
compiled using the LLVM Clang compiler. The bytecode can
then be loaded using the bpf() system call. For this process
to succeed, the program has to get through a sanity-check from
the eBPF verifier, that walks the control flow graph to ensure
termination, simulates the execution to check that memory and
registers are always in a valid state, and verifies that the calls
to helper functions are allowed.

A loaded eBPF program follows an event-driven architec-
ture and it is therefore hooked to a particular type of event:
each occurrence of the event will trigger its execution, and

Linux host
netdevice

tc ingress

netdevice

tc egress

eBPF sandbox

[skb]

XDP hook

eBPF control
plane program

eBPF sandbox

eBPF program
(e.g. Bridge)

Kernel space

User space

Network applications
(e.g., web server, etc)

Network stack

TC hook

eBPF program
(e.g. DDoS
mitigator)

eBPF program
(e.g. Firewall)

Tail call

CLANG + LLVM

JIT+Verifier

eBPF dataplane
source code

eBPF dataplane
binary code

MAPS

Fig. 1. eBPF overview.

based on the type of the event the program might be able to
alter the event context. Furthermore, programs are stateless by
their nature, as each run is independent from the others. For
this reason, the eBPF provides maps, data structures accessible
using helper functions, needed to share information between
(i) different runs of the same program, (ii) different programs
or (iii) a program and the userspace.

For networking purposes, program execution is triggered by
the arrival of a packet. Two hooks are available to intercept
packets and possibly mangle, forward or drop them: eXpress
Data Path (XDP) and Traffic Control (TC). XDP programs in-
tercept RX packets right out of the NIC driver, possibly before
the allocation of the Linux socket buffer (skb), allowing e.g.,
early packet drop. TC programs intercept data when it reaches
the kernel traffic control function, either in RX or TX mode.

Multiple eBPF programs can be instantiated at the same
time, even attached to different hooks. Furthermore, eBPF
programs can either operate in isolation (returning the packet
to the hook they are attached to) or be chained, e.g., to
create a more complex service, using a low-overhead linking
primitive called tail call. Tail calls are a sort of long jump
from one program to another; differently from function calls,
this primitive does not permit to return to the previous context.

A high-level view of the eBPF architecture, including both
code injection and run-time processing, is depicted in Figure 1.

III. EXPERIENCES AND INSIGHTS

This section presents the main challenges encountered while
implementing complex network functions with eBPF, together
with different insights we adopted (or could be adopted) to
accomplish this task.

A. eBPF limitations

eBPF suffers from some well-known limitations due to its
restricted virtual machine, which are needed to guarantee the
integrity of the system. This Section discusses the impact of
the above limitations and highlights some other, less known
issues that arise when creating network services.

1) Limited program size: eBPF programs are executed
within the kernel context; for this reason, their size is limited
to a maximum of 4096 assembly instructions to guarantee
that any program will terminate within a bounded amount of
time. This restriction may be limiting when creating network
functions that perform complex actions in the data plane,
considering that the BPF assembly instructions generated after
the code compilation could be significantly higher than the
number of lines of code of the C source file.
Learning 1: This limitation can be circumvented by parti-
tioning the network function into multiple eBPF programs and
jumping from one to another through tail calls. This technique
enables the creation of network services as a collection of
loosely coupled modules, each one implementing a different
function (e.g., packet parsing, classification, fields modifica-
tion), with a very low overhead in jumping from a piece to
another, as shown in Section IV-E. This attractive feature also
comes with an upper bound limit of 32 nested jumps, which we
found being more than enough to implement complex services.

2) Unbounded loops: Since eBPF applications can be
loaded at runtime in the kernel, they are checked through an in-
kernel verifier that ensures programs cannot harm the system.
The verifier looks for multiple possible threats (e.g., state of
BPF registers, type of values, etc.), rejecting the code in case
backward jumps are detected, thus ensuring that all programs
will terminate, but forbidding any loop in the code. We list
some cases where this limitation may be a problem.

• Parsing nested headers: this is the case of IPv6, which
requires to loop through all the extensions headers to
find the last header indicating the type of the upper-layer
protocol in the payload of the packet. A similar issue affects
MPLS and VLAN headers, whose number of instances
is not known a priori. Creating a network function that
performs these actions in eBPF is not possible unless we
introduce additional constraints, as described below.

• Arbitrary processing of packet payloads: this is required
for example to check the presence of a signature in the
payload. While there are cases in which this loop can
be avoided thanks to the availability of specific helpers
that perform the entire job (e.g., to recalculate the L3/L4
checksum), in general the necessity to perform a loop
scanning the entire packet cannot be excluded a priori.

• Linear scanning of data structures: algorithms that require
a linear scan of data structures (e.g., a map) may need to be
adapted for the eBPF environment. A possible example is a
firewall that looks for the rule that matches a given packet,
which is usually performed through a linear scan across all
the active policies.

Learning 2: Although the eBPF assembly does not support
backward jumps, as far as bounded loop are concerned, we
can exploit the pragma unroll directive of the LLVM
compiler to rewrite the loop as a repeated sequence of similar
independent statements. This can be achieved by imposing a
constant upper bound limit to the loop, such as the maximum

number of IPv6 headers, nested MPLS labels, packet size1.
This solution presents two limitations: (i) the size of the pro-
gram increases, with the possible consequences (and solutions)
shown in III-A1; (ii) we may not be able to guarantee that
all cases are handled, e.g., in case of an exceptional number
of IPv6 headers is present. However, even if the lack of
the support for unbounded loops seems to be an important
limitation, we found it not so critical in our programs, as
it can be often circumvented by creating bounded loops,
although this is left to the responsibility (and experience) of
the developer.

3) Send the same packet on multiple ports: This is still
a rather common operation even in modern local area net-
works, e.g., to handle broadcast frames (e.g., ARP requests),
multicast, or flooding (e.g., in an 802.1D bridge). However,
at least three issues can be encountered when implement-
ing this feature. First, we may need to loop through all
the interfaces to forward the packet the desired number of
times; this can be implemented only if we are able to set
an upper limit on the loop and unroll it (as discussed in
Section III-A2). Second, the packet must be cloned before
sending it on an additional interface; this can be done with
the bpf_skb_clone_redirect() helper, which simulta-
neously duplicates and forwards the original packet to a target
interface. However, this helper is available only when the
program is attached to the TC hook, while an equivalent helper
is not available for XDP programs2. Third, if the service is
part of a virtual chain composed by multiple VNFs connected
through tail calls such as in [3], the aforementioned approach
fails. In fact, the redirect function will be followed by a
tail call, which never returns the control to the caller, hence
preventing the caller code to send a packet to multiple ports.

4) Packet-driven processing: While the execution of an
eBPF program is triggered by an event, the only event that
is supported by TC/XDP programs is a frame traversing the
selected kernel hook. This prevents the eBPF data plane to
react to other events such a timeout that signals the necessity to
periodically send a packet (e.g., neighbor greetings in routing
protocols), or to refresh an expired entry in a table. The above
events have to be handled elsewhere, such as in the slow path
(Learning 3) or in the control plane (Section III-A6).

5) Putting packets on hold: In some cases, network func-
tions may need to put the current frame on hold while waiting
for another event to happen. This is the case of a router that
holds a packet while waiting for an answer to its own ARP
request aiming at discovering the MAC address of the next
hop; the original packet should be released after receiving
the ARP reply. Unfortunately, eBPF does not have a “steal”
action such as in Netfilter, hence preventing this technology to
take the ownership of the packet. Possible workarounds to this
problem can be envisioned, such as copying the entire packet

1A patch [2] that adds support for bounded loops without the necessity to
use the pragma unroll directive has been recently proposed and it may
be integrated in future kernel versions.

2For the sake of precision, XDP offers only the bpf_redirect_map()
helper, which sends the packet to a port but does not clone it.

in a temporary memory, but they may not be suited for all
cases (e.g., handling retransmissions, as the packet has to be
released when a timeout occurs).
Learning 3: Taken together, limitations A3-5 suggest the
necessity to introduce a novel data plane component that is no
longer limited by the eBPF virtual machine, which executes
arbitrary code that can cope with the cases in which the
current eBPF technology cannot be used. This brings to the
evidence the necessity of a slow path module, executed in
userspace, that receives packets from the eBPF program and
reacts consequently with arbitrary processing defined by the
developer; for example by modifying the packet and sending it
back in the egress queue of a specific netdevice3. The necessity
of this module is also highlighted in [4] where the authors use
the OvS userspace module to process packets that do not match
a flow in the OvS kernel eBPF data path.

6) No support for complex control planes: So far, eBPF
has been used mostly for tracing applications, which feature a
very simple control plane such as reading data from maps. As
a consequence, existing eBPF software frameworks provide a
nice set of abstractions that help developers to create data plane
code (hook handling, maps, etc), while it is rather primitive
with respect to the control plane, enabling userspace programs
mainly to read/write data from maps. Networking services are
rather different and often require a sophisticated control plane
not just to read/write data from maps, but to create/handle
special packets (e.g., routing protocols), to cope with special
processing that may complicate (and slow down) the data plane
if handled here (e.g., ARP handling; Section III-A5), or to
react to special events such as timeouts (Section III-A4).
Learning 4: This results in non negligible difficulties when
implementing the (complex) control plane of a service, as it
forces developers to dedicate a considerable amount of time
to write the code that handles common control plane opera-
tions from scratch, without any help from existing software
frameworks.

B. Enabling more aggressive service optimization

The traditional approach when implementing a network
function is to (i) create a program that contains all possible use
cases and control flows (branches) and (ii) make it completely
agnostic with respect to its actual configuration, which is
pushed in the data plane afterwards. With eBPF, this approach
is no longer the only option; in fact, programs can be compiled
from their C source code and injected in the kernel at runtime,
with the system already up and running. This allows us to
take advantage of the runtime service conditions (e.g., traffic
pattern, service configuration, interface from which the traffic
is received/sent) to empower more aggressive optimizations
compared to traditional programs. This section presents three
techniques of this type, enabled by the use of eBPF as data
plane for our networking services.

1) Moving configuration data from memory to code: A
conventional approach for configuring a network function is

3In Linux, a netdevice is a physical or virtual network interface card.

to save data (e.g., the public/private ports in a NAT, the set
of rules in a firewall) in memory, which will be accessed
by the run-time code each time a packet is received. In
the eBPF domain, this corresponds to saving data in maps,
which provide a bidirectional userspace-kernel communication
channel. While this approach is the only viable option for other
technologies, eBPF enables the loading of new code dynami-
cally, hence allowing the creation of situational-specific code
that also embeds the data needed for the current processing.
This technique leverages the superior processing capabilities
of modern CPUs (e.g., speculative execution), trading more
processing instructions for fewer memory accesses, which are
known to introduce a noticeable penalty in particular when
random data access patterns are required, which lead to cache
ineffectiveness.
Learning 5: Hardcoding parameters in the eBPF code in a
way that the service can directly use them without any explicit
memory access may lead to significant performance gains
(Section IV-C2). However, this requires to handle configu-
ration changes by dynamically reloading the program with
the updated parameters; more details will be presented in
Section III-B3.

2) Code tailoring: A network function can have a different
set of features that are not always needed at runtime. For
example, our bridge supports both VLANs and Spanning Tree,
but they may not be required (hence be turned off) at a given
time. The amount of code needed to handle these features is
not negligible and can impact the forwarding performance of
the eBPF network function.
Learning 6: Our experiments showed that cutting the super-
fluous code, at runtime, will bring a significant reduction in
the number of control flows and branches of the program,
hence simplifying the new code and improving the overall
performance of the service, as shown in section IV-C1.

3) Dynamic reloading: The previous two techniques can
provide substantial performance gains; however, their value
would be impacted without the possibility to reload the
program at runtime with a more appropriate version, while
maintaining at the same time the state (e.g., maps) and
configuration of the old program. Dynamic code reloading is
currently supported in eBPF, but the existing software frame-
works do not offer any help, leaving this responsibility in the
developer’s hands and hence requiring additional complexity
when writing efficient network services. Our prototypical code
that supports this feature is strongly hinged on reducing the
service disruption and packet loss (see Section IV-C). While
the new service is compiled and injected, the old one still
handles the traffic. When the new program is ready, maps of
the old instance are attached to it and then atomically swapped
by substituting the pointer to the old program with the new
one. At this point, the new program will start processing the
traffic, and the old one is unloaded.

C. Data structures

eBPF does not have the concept of “raw” memory as used
by classical computers; data are in fact stored in memory areas

structured according to a predefined access model (e.g., hash
map, lru map, array). As of this writing, there are seventeen
types of map that can be used by an eBPF program. Even
though the existing set of maps is very large and allows to
fulfill the requirements of the majority of applications, in the
next two subsections we present some cases in which it may
not be enough.

1) Stack map: We may envision a service that needs to
maintain a pool of elements that can be consumed (e.g.,
through a pop action to get the first free element of the pool)
or produced (e.g., a push operation to insert an item back in
the pool) atomically, hence similar to the behavior of a stack;
this is the case of a NAT service, which needs to keep the list
of available TCP/UDP ports. Unfortunately, this type of data
structure is not present among the set of maps available in
eBPF. Although its behavior can be emulated using an array
and a global counter, used as the index of the first element to
retrieve, it is subject to concurrency problems when multiple
instances of the same program access the same data from
different kernel threads, causing race conditions4.

2) Map with timeout: A typical scenario for networking
functions is to have entries in a table with an associated
timeout; when an entry is not accessed for a specific time
interval, it expires and is removed from the list (e.g., the
filtering database of a bridge). Unfortunately, eBPF does not
have such a map. This behavior can be emulated by (i)
inserting an additional field in the entry that corresponds to the
current timestamp and (ii) check, at every access, that the item
has expired; if so, the entry is deleted and the service continues
as if the entry was not present. Obviously, entries that are no
longer accessed will never be deleted unless an LRU (least
recently used) map is used. This approach partly complies the
lack of this table in eBPF (indeed, it is the approach used
to implement our 802.1D bridge), even if it complicates the
data and control plane of the service that must take care of
discarding old entries, with possible racing conditions.

3) Concurrent map access: When a hook triggers an eBPF
program in the kernel, multiple instances of the same eBPF
application can be executed simultaneously on different cores.
A normal eBPF map has a single instance across all cores
and could be accessed simultaneously by the same eBPF
program running on different cores. eBPF maps are native
kernel objects that are protected through the kernel Read-
Copy-Update (RCU) [6] mechanism, which makes their access
thread safe, regardless of whether the interaction occurred
from userspace or directly from the eBPF program. The fact
that map access is thread-safe does not exclude the presence
of data races, given the implicit multi-threading capabilities of
eBPF and the impossibility to use locks.

The interaction between the control plane and the data plane
is also subject to race conditions since they do not have a
standard synchronization mechanism. For example in a bridge,
if the cleanup of the filtering database is performed in the

4The need for this type of operations in the eBPF maps has been highlighted
several times on the IOVisor mailing list [5].

control plane, we could create the following situation: (i) the
control plane reads an entry from the filtering database and
realizes that it is too old, so it must be removed, (ii) the data
plane receives a packet for that entry and updates the filtering
database with the new timestamp, (iii) the control plane
eliminates the newly inserted entry, producing an unexpected
behavior.
Learning 7: We have noticed that map access is thread-safe
since these structures are protected by the RCU mechanism.
However, race condition can still happen either between con-
trol and data plane or from the same eBPF program running
on different cores. Unfortunately, we have not yet found a
definitive and general solution for all cases. It is, therefore,
the developer who has to take care of this problem and find
alternative solutions depending on the application logic.

D. High performance processing with XDP

XDP provides a mechanism to run eBPF programs at the
lowest level of the Linux networking stack, directly upon
receipt of a packet and immediately out of driver receive
queues. It has two operating modes; the first one, called
Driver (or Native) mode, is the primary mode of operation; to
load eBPF programs at this level, the driver of the netdevice
must support this model. Running network applications in
XDP produces significant performance benefits (as shown in
Section IV-D) since the application can perform operations on
the packet (e.g., redirect, drop or modify) before any allocation
of kernel meta-data structures such as the skb, spending
fewer CPU cycles for processing the packet compared to the
conventional stack delivery. The second one, called Generic
(or SKB) mode allows using XDP within drivers that do not
have native support for it, providing a simple way to use and
test XDP programs with less dependencies.

In section III-D1 we show the main differences between
XDP and the other network hook point, i.e., TC; we will then
present the main drawbacks found in the current support of
the Linux kernel for both XDP Driver (section III-D2) and
XDP Generic mode (section III-D3).

1) Limited helpers: XDP programs are only allowed to
call a subset of helpers compared to eBPF services attached
to the TC layer. In general, eBPF has a set of base helpers
(e.g., map lookup/update, tail calls) available for all types of
programs, with some specific helpers for each category of
hook; approximately 29 available in TC and only 7 in XDP.
We summarize the main differences in the following list:

- Checksum calculation: Primitives for checksum computa-
tions were not fully available in XDP as they are in TC. It
is going to be fixed in the upcoming version 4.16 [7] of the
Linux kernel, but this prevents an eBPF program exploiting
this feature to be executed on an older kernel. In that case,
the solution is to recompute the checksum “by hand”, with
dedicated code in the XDP program.

- Push/Pop headers: XDP does not offer any helper to
push and pop a VLAN tag from the packet or to perform
tunnel encapsulation or decapsulation. In case this feature
is needed, the XDP program can use the more generic

bpf_xdp_adjust_head() helper, which provides the
ability to adjust the starting offset of the packet along with
its size, so it is possible to manipulate the packet according
to the application logic.

- Multi-port transmission: As already highlighted in III-A3,
an equivalent of the bpf_skb_clone_redirect() helper
available in TC is missing in XDP. This does not allow to
forward a packet on several ports at the same time, which
is required by different network applications (e.g., bridge,
router), unless we implement this feature in the slow path.
Learning 8: Writing programs with XDP does not have
significant differences compared to TC; most of the actions
such as direct packet modification, access to maps or the use of
tail calls remain identical with the other hook points. However,
the limited number of helpers forces the developer to use more
generic functions or to implement those functionalities in the
slow path, complicating the code and making it less portable,
with the consequence that the code must different depending
on the kernel hook to which it is attached.

2) XDP Driver mode limitations: Most XDP-enabled
drivers today use a specific memory model (e.g., one packet
per page) to support XDP on their devices. Among the differ-
ent actions allowed in XDP, there is the possibility to redirect
the packet to another physical interface (XDP_REDIRECT).
While this action is currently possible within the same driver,
in our understanding, it is not possible between interfaces of
different drivers. The main problem is the lack of a common
layer/API that the drivers can use to allocate and free pages.
With this model, when a driver performs a packet transmission,
it can communicate the actual sending, back to the Rx driver,
which may recycle the page without having to run into costly
DMA unmap operations5. This lack of generality limits the
network applications that can take advantage of the speed
gain provided by XDP, that have to entrust the normal stack
processing to make the correct forwarding of the packet.

3) Generic XDP limitations: As previously mentioned,
XDP generic can be used to run XDP programs even on
drivers that do not have native XDP support. Although they
are executed right after the skb allocation, thus losing the
advantages available in the driver mode, it still provides better
performance than other hook points such as TC, as shown
in section IV-D2. When triggered, XDP generic programs
can modify the content of the received packet; however, if
the packet data are part of a cloned skb, an XDP program
cannot be executed on this packet, since cloned skb cannot
be modified. This leads to some limitations such as handling
TCP traffic; in fact, our network function running on the XDP
generic hook will never be able to receive TCP traffic, since
most of the packets belonging to TCP sessions are cloned, in
order to be later retransmitted, if necessary.
Learning 9: Although writing programs compatible with both
XDP and TC is not a significant problem, their use is not
interchangeable. Using XDP programs as substitutes of TC

5An interesting discussion on this topic is available here [8]. A patch
towards that direction is available in [9].

services is not always possible, resulting advantageous only
for specific applications. For example, connecting containers
with XDP services may not be appropriate since most of its
advantages given by the the early stage in which frames are
captured would be lost. The XDP hook has been designed
to work mainly in ingress, making tricky the modelization of
services such as a firewall that would need, for example, to
capture packets generated by the host and going outside the
network interface; this is instead possible using TC as a hook
point in ingress and in egress.

E. Service function chaining

The possibility to connect eBPF programs through tail calls
in kernel facilitates the combination of network services (e.g.,
bridge, router, NAT) in a virtual chain, with considerable
advantages as shown in [3]. In this way, eBPF services can
connect to the external world either (i) through a netdevice
or (ii) through a tail call, directly to another eBPF module.
However, this requires the creation of a different source code
based on the port the eBPF program is attached to, since
the assembly instructions used in the two cases are different,
which is an unnecessary complication for a developer.
Learning 10: To make the internal logic of the service
independent from the connection type, we can introduce the
concept of virtual port, which is used by the network function
to receive and forward the traffic, and we can dynamically
generate the proper source code for any given port. However,
the creation of this level of abstraction, so that eBPF programs
are independent from the type of interconnection with the
outside world, is certainly possible but requires a significant
effort of the programmer as it is not explicitly foreseen by any
available framework.

IV. VALIDATION

This Section provides experimental evidence about the
topics discussed in Section III, showing the impact of the main
eBPF limitations and the improvements made in our proto-
types. This evaluation leverages some of the network services
we have implemented, hence exploiting real applications as a
test-bench for our measurements.

A. Test environment and evaluation metrics

Our testbed encompasses two machines (Intel i7-4770 CPU
running at 3.40GHz, four cores plus hyper-threading, 8MB of
L3 cache and 32GB RAM) physically connected to each other
through two direct 10Gbps links terminated in an Intel X540-
AT2 Ethernet NIC. Both machines feature an Ubuntu Server
16.04.4 LTS, kernel 4.14.16, with the eBPF JIT flag enabled.

Throughput was tested by generating a unidirectional stream
of 64B packets through Pktgen-DPDK 3.4.9, with a rate that
is dynamically adjusted to achieve no more than 1% packet
loss; depending on the test, packets may be looped back
to the sender machine. Latency tests were carried out with

6We noticed that with newer kernels (e.g., 4.15/6) there is a marked
performance deterioration, as shown in Figure 2(a), supposedly due to the
fixes introduced after the Meltdown and Spectre vulnerability disclosure.

Moongen [10], which generates the same traffic pattern as
before but it exploits the hardware timestamp on the NIC to
determine the traveling time of a frame when returns back
to the sender; by default, one frame every millisecond is
sampled. All tests were repeated ten times and the figures
contain error bars representing the standard error calculated
from the different runs.

Unless explicitly stated, all tests generate traffic so that only
one CPU core is involved in the processing. Consequently,
throughput in case of real deployment can be much higher
than the reported values thanks to the session-based traffic load
balancing provided by the Linux kernel, which automatically
exploits multiple CPU cores for the processing.

B. Overcoming eBPF limitations

1) Slow-path forwarding performance: Section III-A
showed the most important eBPF limitations that prevent
the implementation of all the features required by complex
network applications in the data path, which can be delegated
to a more flexible userspace component, although with reduced
performance.

To validate this module, we used our 802.1D bridge with
two ports connected to the physical interfaces of the machine
under test. The bridge service uses the slow path when a packet
for an unknown MAC destination is received; in that case, it
will be sent to the slow path module, which floods that packet
to all output ports. To test this feature, we forced our bridge
to send each packet to the slow path, from where they are
forwarded to the output port.

Figure 2(a) shows the throughput calculated in different
networking hook points, i.e., Traffic Control, XDP Generic and
XDP Native between the slow path and the fast path. We can
notice that, while the fast path forwarding varies depending
on the hook point used (XDP performs better than the Traffic
Control), the same is not valid for the slow path; the latter, in
fact, uses the same mechanism to send the packet to userland
regardless the hook point type to which the eBPF program
is attached, hence representing the bottleneck for this test.
Moreover, we notice that processing a packet in the slow path
takes about three times more time than the same processing
done in the kernel. In this case, the maximum forwarding rate
is about 0.3Mpps regardless of packet size, since most of the
time is spent in moving the packet to userspace (and back),
significantly reducing the forwarding speed.

Figure 2(b) indicates the latency measurements calculated
in the same conditions as before; we can notice that as long as
the traffic remains below the maximum throughput calculated
for each hook point, the latency values are almost the same
regardless the hook type; this is due the batching mechanisms
adopted by the driver that introduce a fixed cost on the packet
processing. On the other hand, slow path processing incurs in
a higher overhead due to the additional copy of the packet
between kernel-userspace. Also, we notice how the latency
grows when approaching the maximum value calculated in
the previous test; in this case, the packet loss increases
considerably with a consequent delay in the packet processing.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Traffic Control XDP Generic XDP Native

T
hr

ou
gh

pu
t

(M
pp

s)
Slow path

Fast path (4.14.1)
Fast path (4.16rc4)

 0

 20

 40

 60

 80

 100

0.1 0.2 1 2 2.5 3 3.5 4

L
at

en
cy

 (
us

)

Throughput (Mpps)

Traffic Control
XDP Generic

XDP Native
Slow path

Fig. 2. Throughput (left) and latency (right) for the Bridge service when
redirecting packets entirely in the fast path and when using the slow path.

For example, the throughput of the bridge service calculated
in Traffic Control is 2.22Mpps, and the peak in latency is
seen at 2.5Mpps (in the graph, we do not show the absolute
value for readability reasons, but it is, in all three cases, over
one millisecond). The same behavior is identified in XDP
Generic and XDP Native, where the spike is at 3Mpps and
4Mpps respectively. These numbers indicate the importance of
performing most of the actions in the eBPF fast-path, reducing
the number of trips to the slow path. It is worth noticing that in
real cases we have seen few packets to be raised as exceptions
and sent through the slow path, being closer to 100% of the
packets handled in the kernel for normal applications.

C. Enabling more aggressive service optimization

1) Code tailoring: To evaluate the potential benefits of this
technique we took our Bridge service and we changed its
features at runtime, enabling the VLAN and Spanning Tree
(STP) and measuring the final throughput using the same
traffic, independently from the enabled feature. Figure 3(a)
shows how the complexity increases, in terms of BPF instruc-
tions, when functionalities requiring more complex actions
are enabled. This complexity is also reflected in the overall
forwarding performance of the service, where we can see a
drop of up to 20% of the throughput between the baseline, in
which acts as a simple L2 learning Bridge, to the full version
of the bridge that supports VLAN and STP. Note that this
performance improvement would not be possible without the
code tailoring and the dynamic reloading, forcing the user to
work with the full version of the bridge even if those features
were not required at that moment.

2) Moving configuration data from memory to code: To
estimate the goodness of this technique, we used our bridge
service, comparing the actual throughput in the three different
hook points, when the optimization is enabled and when it
is not, as shown in Figure3(b). In this specific case, the
optimization consists in moving the content of the filtering
database from memory (i.e., a map) directly into the code,
with the entries statically embedded in it, for example via a
switch-case on the destination MAC address to forward the
packet on the right port. Obviously, we set a maximum limit
to the entries directly written in the code. This feature permits
to optimize the most common case, by statically inserting
the entry within the code, hence avoiding (costly) memory
accesses, with performance benefits ranging from 5% or 10%,
with the possibility of obtaining higher gains by combining
this technique with the previous one.

 0

 1

 2

 3

 4

 5

Baseline +STP +VLAN +VLAN+STP
 0

 100

 200

 300

 400

 500

 600

 700

T
hr

ou
gh

pu
t

(M
pp

s)

L
O

C
/I

ns
n

(#
)

Throughput (TC)
eBPF LOC

BPF Insn

 0

 1

 2

 3

 4

 5

Traffic Control XDP Generic XDP Native

T
hr

ou
gh

pu
t

(M
pp

s)

Without optimization
With optimization

Fig. 3. Effect on the end-to-end throughput, using the code tailoring technique
(left) and the moving configuration from memory to code (right).

TABLE I
RELOADING TIME OF VARIOUS EBPF SERVICES

Service C LOC BPF Insn
Compilation (ms)

Injection
Kernel .h UAPI .h (ms)

Firewall* 1094 1564 8683 850 50

LBDSR 305 910 889 830 6

LBRP 470 723 885 853 2

Router 331 458 885 799 1

Bridge 243 464 854 236 2

NAT 564 441 847 809 1

DDoS 136 74 806 642 1

* This service uses a chain of eBPF programs; the time shown refers to the
one needed to compile and inject the entire programs chain, which comprises
several eBPF programs.

3) Reloading: This technique is heavily used in our ser-
vices (in conjunction with the ones described above) to adjust
the code injected in the kernel with the updated runtime
service parameters. Table I shows the cost of this technique
by comparing the reloading time for different services, which
can be split into two pieces. The first one is the time needed
to compile the C source code into eBPF assembly instructions
while the second is the time required to inject the program in
the kernel, which involves a pass in the in-kernel verifier.

We notice how the compilation phase consumes most of the
reloading time (we leverage bcc [1] to appropriately package
eBPF modules in the kernel) while only a small part, around
1%, is spent on the in-kernel injection. Also, we realized
that using the Linux standard kernel headers introduces a
considerable overhead as they internally include other headers
that often are not needed by our eBPF program. By carefully
selecting the headers present in the uapi directory, which
are often smaller and more compact, we noticed a significant
reduction in compilation time, as shown in the firewall service
in Table I. In fact, this service uses multiple eBPF programs in
the data path; optimizing the compilation time of every small
program reduces the overall reloading time of the service. It
is important to notice that bcc provides additional primitives
to facilitate the interaction with the eBPF ecosystem; during
the compilation phase, the code is then rewritten mapping the
bcc-provided helpers into the corresponding eBPF functions.
The compilation time shown in the Table I is the sum of three
phases (of approximately the same duration) during which
the code is pre-processed, rewritten and ultimately compiled
producing the final BPF assembler code.

Some works such as [11] keep compiled versions of their
services and then perform an optimization directly on the

compiled code, without this additional overhead. However, we
believe that this mechanism limits the potential of previous
techniques, reducing their possible optimizations. Although in
this case the overall reloading time would not be negligible, as
we explained in Section III-B3, we swap the existing program
with its optimized version after the program has been compiled
and injected, thus avoiding any service disruption.

D. High performance processing with XDP

1) XDP Native: The performance benefits of Native XDP
services are evident from the previous figures. In fact, attach-
ing the same program in XDP Native mode leads to an increase
in performance of about 65% (Figures 2(a)-2(b)), allowing to
achieve higher throughput. In addition, when comparing XDP
programs with the other hook points at the same throughput,
it brings to a significant reduction of CPU consumption due
to the lower overhead for packets management. This speed
comes with the limitation that programs of this type can only
be used when the entry points of the chain are physical or
virtual interfaces7, while they must return to the normal stack
delivery in case of different workloads (e.g., containers).

2) XDP Generic: Previous figures show that XDP Generic
provides about a 25% of performance improvement compared
to Traffic Control, allowing us to conclude that it can be used
to speed up the performance of services even for drivers that do
not have native XDP support. Generic XDP programs may be
directly attached to virtual ethernet interfaces (veth) providing
services to workloads such as containers, with hopefully a
performance increment. However, this feature is hardly usable
when containers are involved, due to the problem mentioned
in Section III-D3.

E. Service function chaining

The ability to directly connect eBPF services to each other
in the kernel (section III-E) is a significant advantage of this
technology. This section evaluates the overhead of the tail calls
in the three different hook points by using a simple program
that forwards a packet between two physical interfaces, but
whose code includes a growing number of tail calls. As shown
in Figure 4, the overhead of the tail calls is almost negligible
up to 8, which is enough for most of the applications, while
it increases significantly with 16 and 32; the reason of this
additional overhead is still unclear.

V. CONCLUSION

This paper presents our experience in developing complex
network applications with eBPF, an up-and-coming technology
that allows executing code at runtime in the Linux kernel,
without the need to package custom kernel modules. We
described the main limitations of this technology demonstrat-
ing how, in most cases, these can be circumvented without
affecting the necessities of real network applications. In other
cases, we have proposed alternative solutions to overcome
these limitations. Thus, we identified and discussed several

7Recently, support for receiving frames with XDP has been added to the
tuntap driver [12].

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7

1 2 4 8 16 32

T
hr

ou
gh

pu
t

(M
pp

s)

Number of tail calls

Traffic Control
XDP Generic

XDP Native

Fig. 4. End-to-end throughput with an increasing number of tail calls.

ideas related to the possibility of injecting code dynamically
in the kernel that opens the way to several new optimizations
strategies. Finally, we verified the real applicability of the
proposed ideas and the consequent performance advantages,
exploiting the several applications we created for our experi-
ments. We are confident that this type of practical learnings can
positively influence ongoing development and advancements
in the field of eBPF-based network services and applications.

ACKNOWLEDGMENT

The authors would like to thank VMware and Huawei for
their generous support, Y. Lu, J. Pi, A. Shaikh, P. Monclus,
B. Blanco, A. Starovoitov, R. Bhagavatula, F. Bonomi, N.
Iotti, F. Antonini, D. Siracusa for the inspiring discussions
and their scientific help, and the many students and colleagues
(I. Cerrato, N. Chiarappa, L. Ferrettino, S. Imperiale, A.P.
Malinconico, F. Picciariello, G. Saitta) who collaborated to
this project and contributed with ideas, code, comments.

REFERENCES

[1] BCC authors. BPF Compiler Collection (BCC). [Online]. Available:
https://www.iovisor.org/technology/bcc

[2] E. Cree. (2018, feb) Bounded loops for ebpf. [Online]. Available: https:
//web.archive.org/web/20180308141915/https://lwn.net/Articles/748032/

[3] Z. Ahmed, M. H. Alizai, and A. A. Syed, “Inkev: In-kernel distributed
network virtualization for dcn,” ACM SIGCOMM Computer Communi-
cation Review, vol. 46, no. 3, 2016.

[4] C.-C. Tu, J. Stringer, and J. Pettit, “Building an extensible open vswitch
datapath,” ACM SIGOPS Operating Systems Review, vol. 51, no. 1, pp.
72–77, 2017.

[5] M. V. Bernal. (2018, feb) [iovisor-dev] handle pool of elements in ebpf
maps. [Online]. Available: https://lists.iovisor.org/pipermail/iovisor-dev/
2018-February/001241.html

[6] F. What is RCU. (2007, dec) Mckenney, paul e. and walpole, jonathan.
[Online]. Available: https://web.archive.org/web/20180125051005/https:
//lwn.net/Articles/262464/

[7] D. Borkmann, bpf: add csum diff helper to xdp as well, jan 2018, in
Linux Kernel, commit 205c380778d0.

[8] J. D. Brouer. (2017, aug) Xdp redirect mea-
surements, gotchas and tracepoints. [Online]. Avail-
able: https://web.archive.org/web/20180311113307/https://www.spinics.
net/lists/xdp-newbies/msg00269.html

[9] ——. (2018, mar) Xdp redirect memory return api. [Online].
Available: https://web.archive.org/web/20180316133406/https://lwn.net/
Articles/748866/

[10] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings of
the 2015 Internet Measurement Conference. ACM, 2015, pp. 275–287.

[11] Cilium authors. HTTP, gRPC, and Kafka Aware Network Security and
Networking for Containers with BPF and XDP. [Online]. Available:
https://cilium.io/

[12] J. Wang and D. S. Miller. (2017, dec) Xdp transmission for tuntap.
[Online]. Available: https://web.archive.org/web/20180315083526/https:
//lwn.net/Articles/742501/

