171 research outputs found

    Dynamic Model for the Energetic Optimization of Turbocompound Hybrid Powertrains

    Get PDF
    Abstract This paper presents the simulation activity carried out to analyze the power flows and the energy breakdown of an innovative hybrid-turbocompound powertrain, which will be employed in the 2014 F1 championship. The analyzed powertrain consists in a supercharged internal combustion engine integrated by two electric machines – connected respectively to the turbocharger shaft and to the engine shaft – a static converter and a battery. Simulations through Matlab-Simulink were carried out both in race and in qualifying conditions, obtaining useful information about the electric machines and battery duty cycles and about the calibration of the system operational algorithms during one lap

    Exact results in a N=2 superconformal gauge theory at strong coupling

    Get PDF
    We consider the N = 2 SYM theory with gauge group SU(N) and a matter content consisting of one multiplet in the symmetric and one in the anti-symmetric representation. This conformal theory admits a large-N ’t Hooft expansion and is dual to a particular orientifold of AdS5 × S5. We analyze this gauge theory relying on the matrix model provided by localization à la Pestun. Even though this matrix model has very nontrivial interactions, by exploiting the full Lie algebra approach to the matrix integration, we show that a large class of observables can be expressed in a closed form in terms of an infinite matrix depending on the ’t Hooft coupling lambdalambda. These exact expressions can be used to generate the perturbative expansions at high orders in a very efficient way, and also to study analytically the leading behavior at strong coupling. We successfully compare these predictions to a direct Monte Carlo numerical evaluation of the matrix integral and to the Padé resummations derived from very long perturbative series, that turn out to be extremely stable beyond the convergence disk |lambdalambda| < pi2pi^2 of the latter

    Gaussian graphical modeling for spectrometric data analysis

    Get PDF
    Motivated by the analysis of spectrometric data, we introduce a Gaussian graphical model for learning the dependence structure among frequency bands of the infrared absorbance spectrum. The spectra are modeled as continuous functional data through a B-spline basis expansion and a Gaussian graphical model is assumed as a prior specification for the smoothing coefficients to induce sparsity in their precision matrix. Bayesian inference is carried out to simultaneously smooth the curves and to estimate the conditional independence structure between portions of the functional domain. The proposed model is applied to the analysis of infrared absorbance spectra of strawberry purees

    SU2: The Open-Source Software for Non-ideal Compressible Flows

    Get PDF
    The capabilities of the open-source SU2 software suite for the numerical simulation of viscous flows over unstructured grid are extended to non-ideal compressible-fluid dynamics (NICFD). A built-in thermodynamic library is incorporated to account for the non-ideal thermodynamic characteristics of fluid flows evolving in the close proximity of the liquid-vapour saturation curve and critical point. The numerical methods, namely the Approximate Riemann Solvers (ARS), viscous fluxes and boundary conditions are generalised to non-ideal fluid properties. Quantities of interest for turbomachinery cascades, as loss coefficients and flow angles, can be automatically determined and used for design optimization. A variety of test cases are carried out to assess the performance of the solver. At first, numerical methods are verified against analytical solution of reference NICFD test cases, including steady shock reflection and unsteady shock tube. Then, non-ideal gas effects in planar nozzles and past turbine cascades, typically encountered in Organic Rankine Cycle applications, are investigated and debated. The obtained results demonstrate that SU2 is highly suited for the analysis and the automatic design of internal flow devices operating in the non-ideal compressible-fluid regime

    Analysis, design and construction of copper vapor laser system

    Get PDF
    In this work construction characteristics and performance of a small scale self-heating copper vapor laser are presented. Analytical design of the thermal isolator is reported in some detail. Particular attention has been given to the knowledge of power deposition in the discharge to evaluate the component losses. In the optimized conditions the laser mean power is over 5 W, confirming the expected values. Details of the measurements on the system are also reported

    Testina di perfusione per un sistema di microapplicazione

    Get PDF
    Una forma di attuazione della presente invenzione rende disponibile una testina di perfusione per un sistema di microapplicazione, la quale comprende una pluralità di raccordi cilindrici ricavati in corpo monolitico e singolarmente atti ad accoppiarsi con un rispettivo tubo di convogliamento di un fluido da applicare, ed altrettanti condotti di erogazione ricavati all’interno di detto corpo monolitico e singolarmente atti a porre in comunicazione un 10 rispettivo raccordo cilindrico con una rispettiva luce di uscita. [fig. 3

    Dispositivo termoregolatore per un sistema di microperfusione

    Get PDF
    Una forma di attuazione della presente invenzione riguarda un dispositivo termoregolatore (225) per un sistema di microperfusione (100), il quale comprende almeno un elemento Peltier (235) ed una piastra di supporto (255) in materiale termicamente conduttore, la quale è posta in relazione di scambio termico con l’elemento Peltier (235) e presenta un alloggiamento (270, 275, 280) per un tubo di convogliamento (265) di un fluido da erogare

    Nimodipine in otolaryngology: from past evidence to clinical perspectives

    Get PDF
    As L-type voltage-gated calcium channels (VGCCs) control Ca(2+) influx and depolarisation of cardiac and vascular smooth muscle, they represent a specific therapeutic target for calcium channel blockers (CCBs), which are approved and widely used to treat hypertension, myocardial ischaemia and arrhythmias. L-type currents also play a role in calcium entry in the sensory cells of the inner ear. In hair cells of both cochlea and labyrinth, calcium cytoplasmic influx is the first physiological process that activates complex intracellular enzymatic reactions resulting in neurotransmitter release. Excessive calcium ion entry into sensory cells, as a consequence of L-VGCCs malfunction is responsible for over-activation of phospholipase A2 and C, protein kinase II and C, nitric oxide synthase and both endonucleases and depolymerases, which can cause membrane damage and cellular death if the cytoplasmic buffering capacity is overcome. Nimodipine, a highly lipophilic 1-4 dihydropyridine that easily crosses the brain-blood barrier, is generally used to reduce the severity of neurological deficits resulting from vasospasm in patients with subarachnoid haemorrhage. Moreover, due to its selective blocking activity on L-channel calcium currents, nimodipine is also suggested to be an effective countermeasure for cochlear and vestibular dysfunctions known as channelopathies. Indeed, experimental data in amphibians and mammalians indicate that nimodipine has a stronger efficacy than other CCBs (aminopyridine, nifedipine) on voltage-dependent whole-cell currents within hair cells at rest and it is the only agent that is also effective during their mechanically induced depolarisation. In humans, the efficacy of nimodipine is documented in the medical management of peripheral vestibular vertigo, sensorineural hearing loss and tinnitus, even in a pathology as complex as Ménière's disease. Nimodipine is also considered useful in the prophylaxis of damage to the facial and cochlear nerves caused by ablative surgery of cerebellopontine tumours; it has been recently hypothesised to accelerate functional recovery of recurrent nerve lesions during thyroid cancer surgery. Further trials with adequate study design are needed to test the efficacy of nimodipine in the treatment of vertigo due to cerebrovascular disease and vestibular migraine.As L-type voltage-gated calcium channels (VGCCs) control Ca(2+) influx and depolarisation of cardiac and vascular smooth muscle, they represent a specific therapeutic target for calcium channel blockers (CCBs), which are approved and widely used to treat hypertension, myocardial ischaemia and arrhythmias. L-type currents also play a role in calcium entry in the sensory cells of the inner ear. In hair cells of both cochlea and labyrinth, calcium cytoplasmic influx is the first physiological process that activates complex intracellular enzymatic reactions resulting in neurotransmitter release. Excessive calcium ion entry into sensory cells, as a consequence of L-VGCCs malfunction is responsible for over-activation of phospholipase A2 and C, protein kinase II and C, nitric oxide synthase and both endonucleases and depolymerases, which can cause membrane damage and cellular death if the cytoplasmic buffering capacity is overcome. Nimodipine, a highly lipophilic 1-4 dihydropyridine that easily crosses the brain-blood barrier, is generally used to reduce the severity of neurological deficits resulting from vasospasm in patients with subarachnoid haemorrhage. Moreover, due to its selective blocking activity on L-channel calcium currents, nimodipine is also suggested to be an effective countermeasure for cochlear and vestibular dysfunctions known as channelopathies. Indeed, experimental data in amphibians and mammalians indicate that nimodipine has a stronger efficacy than other CCBs (aminopyridine, nifedipine) on voltage-dependent wholecell currents within hair cells at rest and it is the only agent that is also effective during their mechanically induced depolarisation. In humans, the efficacy of nimodipine is documented in the medical management of peripheral vestibular vertigo, sensorineural hearing loss and tinnitus, even in a pathology as complex as Ménière's disease. Nimodipine is also considered useful in the prophylaxis of damage to the facial and cochlear nerves caused by ablative surgery of cerebellopontine tumours; it has been recently hypothesised to accelerate functional recovery of recurrent nerve lesions during thyroid cancer surgery. Further trials with adequate study design are needed to test the efficacy of nimodipine in the treatment of vertigo due to cerebrovascular disease and vestibular migraine
    • …
    corecore