71 research outputs found

    Evidence and Implications of Hydrological and Climatic Change in the Reno and Lamone River Basins and Related Coastal Areas (Emilia-Romagna, Northern Italy) over the Last Century

    Get PDF
    Climate change and human activities have consequences on coastal areas as they affect hydrological processes in the related river basins. The riverine sediment supply to the beaches of the Emilia-Romagna coast, a highly urbanized area with high economic and naturalistic value, has been heavily impacted by human activities throughout the catchment, reducing solid transport to the coast and increasing the threat of coastal erosion and flooding. Despite the introduction of safeguard policies in the early 1980s and the consequent stoppage of such activities, the expected return in solid transport has not yet been reflected at the coast. To better understand the various processes acting at the river basin scale, we utilized empirical mode decomposition to analyze the variability in different parameters (river discharge, rainfall, air temperature, and sea level) from the headwaters to the coast of the Reno and Lamone rivers over the last century. The anthropogenic footprint, linked to the large-scale dimming/brightening phenomenon, is visible in the long-term trends. Moreover, natural signals with variable periodicity are evident and partially correlated with two major climate modes (North Atlantic Oscillation and Atlantic Multidecadal Oscillation). The coupled interactions among these processes, combined with the changes in land use and evapotranspiration during the last century, have resulted in the prolonged scarcity of river sediment supply and a long-term trend of erosion of the coastal area

    Sea-Level Change along the Emilia-Romagna Coast from Tide Gauge and Satellite Altimetry

    Get PDF
    Coastal flooding and retreat are markedly enhanced by sea-level rise. Thus, it is crucial to determine the sea-level variation at the local scale in order to support coastal hazard assessment and related management policies. In this work we focus on sea-level change along the Emilia-Romagna coast, a highly urbanized, 130 km-long belt facing the Northern Adriatic Sea, by analysing data from three tide gauges (with data records in the last 25-10 years) and related closest grid points from ESA_CCI monthly gridded satellite altimetry. The results reveal that the rate of sea-level rise observed by altimetry is coherent along the coast (2.8 \ub1 0.5 mm/yr) for the period 1993-2019 and that a negative acceleration of -0.3 \ub1 0.1 mm/yr is present, in contrast with the global scale. Rates resulting from tide gauge time series analysis diverge from these values mainly in consequence of a large and heterogeneous rate of subsidence in the region. Over the common time span, altimetry and tide gauge data show very high correlation, although their comparison suffers from the short overlapping period between the two data sets. Nevertheless, their combined use allows to assess the recent (last 25 years) sea-level change along the Emilia-Romagna coast and to discuss the role of different interacting processes in the determination of the local sea level

    Assessment of sea-level variability for the Emilia-Romagna coastal area in the framework of the Mediterranean Sea

    Get PDF
    Sea–level change is one of the ocean characteristics closely connected to climate change. Understanding its variation is essential since a large portion of the world’s population is located in low–lying locations. Two main techniques are employed to measure sea level: satellite altimetry and tide gauges. Satellite altimetry monitors sea–level relative to a geocentric reference, is unaffected by crustal processes and covers nearly the entire surface of the oceans since 1993. Conversely, tide gauges measure sea level at specific coastal locations and relative to a local ground benchmark, therefore are impacted by vertical land movements. In this study, the linear and non–linear geocentric and relative sea–level trends along the Emilia–Romagna coast (Northern Italy) have been analyzed over different periods. In order to assess the local sea–level variability, data from satellite altimetry and tide gauges have been compared over a common time interval (1993–2019), hence disentangling the contribute of vertical land movements. Non–linearity has been also evaluated at the broader scale of the Mediterranean Sea, in order to depict the main variability in geocentric sea–level trends from regional to sub–basin scale. Furthermore, the anthropogenic and natural influence at the river basin scale has been addressed, in order to shed light on the factors inducing the drastic reduction of riverine sediment supply to the Emilia–Romagna coast over the period 1920–2020. The findings of this analysis indicate that the sediment delivery reduction to the coast by rivers has been driven by several anthropogenic processes, acting on various spatiotemporal scales. Moreover, the local absolute sea–level trend is far from linear and appear "contaminated" by the presence of natural oscillations that act at the multi–decadal, quasi–decadal and inter–annual scale, mainly driven by both large–scale climatic modes and variations in local oceanography

    Coastal Erosion and Flooding Threaten Low-Lying Coastal Tracts at Lipari (Aeolian Islands, Italy)

    Get PDF
    Lipari is the largest and most populated island in the Aeolian Archipelago, a UNESCO site, and a highly frequented touristic destination. As in many other insular settings, the low-lying coastal stretches in the E and NE sectors of Lipari are locally exposed to coastal erosion and flooding, enhanced by subsidence effects leading to local sea level rise. Most of these coastal sectors appear critical, being narrow and increasingly threatened by the risk of permanent inundation and beach disappearance. In this study, this setting is placed in the wider context of the decadal evolution of the main beaches, analysed through a multidisciplinary approach, which includes remote sensing techniques (aero-photogrammetry, unmanned aerial vehicle survey, and satellite data), offshore geophysical surveys (high-resolution multibeam bathymetry), and field observations. The results show a variable interaction in space and time between natural and anthropogenic factors in the long- and mid-term evolution of the studied coastal areas. Considering that part of the local economy at Lipari depends on beach tourism, proper future management is required in the view of natural risk reduction and in the light of future climate changes and related impacts

    Epilepsy in Neurodegenerative Dementias: A Clinical, Epidemiological, and EEG Study

    Get PDF
    BACKGROUND: Seizures are common in patients with dementia but precise epidemiologic data of epilepsy in neurodegenerative dementia is lacking. OBJECTIVE: The first aim of the study was to investigate prevalence and clinical characteristics of epilepsy in a large cohort of patients with neurodegenerative dementias. Subsequently, we explored clinical, neuropsychological, and quantitative electroencephalogram (qEEG) data of Alzheimer's disease (AD) patients with epilepsy (AD-EPI) as compared to AD patients without epilepsy (AD-CTR). METHODS: We retrospectively evaluated consecutive patients with a diagnosis of a neurodegenerative dementia and a clinically diagnosed epilepsy that required antiepileptic drugs (AED). All patients underwent baseline comprehensive neuropsychological assessment. A follow-up of at least one year was requested to confirm the dementia diagnosis. In AD patients, qEEG power band analysis was performed. AD-CTR and AD-EPI patients were matched for age, Mini-Mental State Examination score, and gender. RESULTS: Thirty-eight out of 2,054 neurodegenerative dementia patients had epilepsy requiring AED. The prevalence of epilepsy was 1.82% for AD, 1.28% for the behavioral variant of frontotemporal dementia (bvFTD), 2.47% for dementia with Lewy bodies (DLB), and 12% for primary progressive aphasia. Epilepsy were more drug-responsive in AD than in non-AD dementias. Finally, no significant differences were found in neuropsychological and qEEG data between AD-EPI and AD-CTR patients. CONCLUSION: In our cohort, AD, FTD, and DLB dementias have similar prevalence of epilepsy, even if AD patients were more responsive to AED. Moreover, AD-EPI patients did not have significant clinical, neuropsychological qEEG differences compared with AD-CTR patients

    Sea-level trend variability in the Mediterranean during the 1993–2019 period

    Get PDF
    Sea-level change is one of the most concerning climate change and global warming consequences, especially impacting coastal societies and environments. The spatial and temporal variability of sea level is neither linear nor globally uniform, especially in semi-enclosed basins such as the Mediterranean Sea, which is considered a hot spot regarding expected impacts related to climate change. This study investigates sea-level trends and their variability over the Mediterranean Sea from 1993 to 2019. We use gridded sea-level anomaly products from satellite altimetry for the total observed sea level, whereas ocean temperature and salinity profiles from reanalysis were used to compute the thermosteric and halosteric effects, respectively, and the steric component of the sea level. We perform a statistical change point detection to assess the spatial and temporal significance of each trend change. The linear trend provides a clear indication of the non-steric effects as the dominant drivers over the entire period at the Mediterranean Sea scale, except for the Levantine and Aegean sub-basins, where the steric component explains the majority of the sea-level trend. The main changes in sea-level trends are detected around 1997, 2006, 2010, and 2016, associated with Northern Ionian Gyre reversal episodes, which changed the thermohaline properties and water mass redistribution over the sub-basins
    • …
    corecore