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Abstract

Sea–level change is one of the ocean characteristics closely connected to climate
change. Understanding its variation is essential since a large portion of the world’s
population is located in low–lying locations. Two main techniques are employed to
measure sea level: satellite altimetry and tide gauges. Satellite altimetry monitors
sea–level relative to a geocentric reference, is unaffected by crustal processes and
covers nearly the entire surface of the oceans since 1993. Conversely, tide gauges
measure sea level at specific coastal locations and relative to a local ground bench-
mark, therefore are impacted by vertical land movements. In this study, the linear
and non–linear geocentric and relative sea–level trends along the Emilia–Romagna
coast (Northern Italy) have been analyzed over different periods. In order to assess
the local sea–level variability, data from satellite altimetry and tide gauges have
been compared over a common time interval (1993–2019), hence disentangling the
contribute of vertical land movements. Non–linearity has been also evaluated at
the broader scale of the Mediterranean Sea, in order to depict the main variability
in geocentric sea–level trends from regional to sub–basin scale. Furthermore, the
anthropogenic and natural influence at the river basin scale has been addressed, in
order to shed light on the factors inducing the drastic reduction of riverine sediment
supply to the Emilia–Romagna coast over the period 1920–2020. The findings of this
analysis indicate that the sediment delivery reduction to the coast by rivers has been
driven by several anthropogenic processes, acting on various spatiotemporal scales.
Moreover, the local absolute sea–level trend is far from linear and appear "con-
taminated" by the presence of natural oscillations that act at the multi–decadal,
quasi–decadal and inter–annual scale, mainly driven by both large–scale climatic
modes and variations in local oceanography.
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1 Introduction

Sea level is one of the Essential Climate Variables (ECVs) that represent the key

parameters of the Earth system, as defined and evaluated on a regular basis by the

Global Climate Observing System (GCOS) in support of the United Nations Framework

Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate

Change (IPCC). It is represented by the position of the sea surface after it has been

time–averaged to remove high–frequency signals caused by factors such as wind–waves

(Pugh and Woodworth, 2014) and short–term meteorological impacts (Gregory et al.,

2019). However, over interannual, decadal, and longer time intervals, there is substantial

geographical variability (Figure 1) (Meyssignac et al., 2017).

Figure 1: Sea–level trends and their variability across the globe over the period 1993–2016. From
NASA/JPL–Caltech.

It is widely acknowledged that the rise in anthropogenic greenhouse gas emissions in

the atmosphere, along with a slight increase in natural solar irradiance, has resulted in

a cumulative increase in effective radiative forcing (ERF) since the 1970s (IPCC, 2021),

and therefore in global warming. Since the early 20th century, there has been persuasive

evidence from observational records that Global Mean Sea Level (GMSL) has been in-

creasing in response to growing atmospheric concentrations of greenhouse gasses emitted
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by human activities (Oppenheimer et al., 2019). Indeed, over the last 60 years the ocean

has stored more than 90% of the heat gain in the climate system caused by the ERF

(Levitus et al., 2012), resulting in thermal expansion and sea–level rise.

Sea level has continuously changed on all time spans, in response to a continuously

changing Earth’s climate over time. On a worldwide basis, there is general agreement that

sea level has risen at a rate of 1.7 ± 0.2 mm·year−1 over the 20th century (IPCC, 2021),

and at a rate of 3.3 ± 0.5 mm·year−1 over the period 1993–2015 (Legeais et al., 2018). This

is not a constant process as a positive acceleration (0.084 ± 0.025 mm·year−2) was also

found at different temporal scales (Nerem et al., 2018; Dangendorf et al., 2019). However,

analyses on paleoclimate data showed that current sea–level rates are unprecedented in

the whole upper Holocene (Kopp et al., 2016), highlighting how this process has been

impacted by anthropogenic activities.

Nowadays, it is certain that sea–level rise and climate change will have significant

social and environmental consequences, especially in low–elevation coastal zones (LECZs)

where more than 620 million people are currently inhabited, and this number is expected

to double by 2060 (Nicholls et al., 2011; Neumann et al., 2015). LECZs are, above all, im-

pacted by the aforementioned processes, producing a constant increasing risk for coastal

populations and ecosystems living there. This raises global generalized concern about the

sea–level rise impact at large scales and along coasts. LECZs globally have reached a key

tipping point, transitioning from a natural pseudo–stable state to a state dominated by

human dynamics (Tessler et al., 2015) as a result of land–use changes throughout their

catchment regions (Milliman and Syvitski, 1992; Darby et al., 2016). Despite the fact

that climate–driven changes continue to have an impact, they may be of secondary rele-

vance locally (Darby et al., 2015) because human factors may interact more significantly

with hydrological processes. Anthropogenic changes across catchment regions, as well as

hydrological and climatic changes and their links to atmospheric dynamics, should thus

be considered in order to better understand which factors are most likely to drive the

evolution of coastal areas.
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1.1 The sea–level components

Sea–level change is the result of a constant, changeable, and complex interplay be-

tween several components that act across the whole Earth system, i.e. between the ocean,

solid Earth, atmosphere, and cryosphere, also mixing nowadays anthropogenic and natu-

ral factors. Furthermore, all these components act on a wide range of spatial and temporal

scales (Oppenheimer et al., 2019; Fox-Kemper et al., 2021). Indeed, some components

represent the major drivers of sea–level change at the global scale, while others are critical

at regional and/or local scale (Figure 2), which might locally overwhelm global drivers

and alter the sea–level rate.

Figure 2: Processes that influence sea level at the global (blue), regional (orange) and lo-
cal/coastal (red) scale, and their related current level of understanding. From Oppenheimer
et al. (2019).

As shown in Figure 2, different processes are characterized by different time scale of

adjustment, further highlighting the complexity of the phenomenon. Furthermore, not all

processes have a high (nor medium) level of understanding, pointing out the need for a

constant effort in order to reach a highest level of comprehension.

1.1.1 Global processes

The main components causing GMSL change at present are the change in density of

seawater, i.e., the effect induced by variations in water temperature and salinity, and the

water mass exchange between ocean and continents, that is linked to the growth/decrease
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of terrestrial glaciers, ice sheets and amount of water stored on land. These contribu-

tors vary in response to both anthropogenic global climate change and natural climate

variability (Rhein et al., 2013). According to the standard terminology (Gregory et al.,

2019), the GMSL change induced by density variations is referred as the steric component

(Mellor and Ezer, 1995; Levitus et al., 2012), while the mass component (or barystatic

sea level) is the result of ocean/continental mass exchange (Ngo-Duc et al., 2005; Meier

et al., 2007) which, from a specific source, propagates around the globe, such that all

regions experience a sea–level change (Lorbacher et al., 2012). The amount of sea–level

change driven by the addition/removal of water mass is called sea–level equivalent, i.e.

the conversion of a continental water mass (liquid, ice or vapor) into a sea–level amount.

For instance, by considering the current volume of the ocean and a density value of 1000

kg·m−3, a water mass addiction (removal) of 362.5·1012 kg would be necessary to generate

1 mm of GMSL rise (fall). The bulk of sea–level rise throughout the twentieth century is

explained by mass components (Slangen et al., 2017), although thermal expansion contri-

bution has progressively grown since 1910 and especially from the 1970s (Levitus et al.,

2012), when the anthropogenic forcing (linked to ERF modification) become dominant

(Slangen et al., 2016).

Steric sea–level change is driven by variations in ocean density and is made up of

thermosteric and halosteric sea–level changes. Thermosteric sea–level change occurs as a

result of changes in ocean temperature: rising (declining) temperatures decrease (increase)

ocean density while increasing (lowering) volume per unit mass, thus leading to thermal

expansion (contraction). According to estimates (Church et al., 2010), a temperature

increase of about 0.1 °C leads to an expansion of a 1000 meters water column by around

1 to 2 cm. Salinity changes, conversely, cause halosteric sea–level change: increased

salinity leads to higher density and decreased volume per unit of mass, and vice–versa.

Both processes are significant also on regional to local scales (Durack and Wijffels, 2010;

Church et al., 2010); however, thermosteric changes substantially contribute to GMSL

change, whereas halosteric influence is minimal (Gregory et al., 2019; IPCC, 2021).

The largest freshwater reservoirs on Earth are currently represented by the Antarctic

and Greenland ice sheets, which are the major contributors to the GMSL change linked
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to the mass component. The imbalance between accumulation and loss from melting,

sublimation, and iceberg calving causes fluctuations in ice sheet volume. Furthermore,

changes in the thickness and extent of the ice sheets as a consequence of melt from below,

calving, or disintegration, as a result of surface meltwater infiltrating crevasses, can have

an impact on the flow of inland ice streams. Little is known about the mass balance of

ice sheets, due to insufficient and fragmentary observations prior to the 1990s. Indeed,

since that period several remote sensing observations, e.g., airborne and satellite radar

and laser altimetry, interferometric synthetic aperture radar InSAR, space gravimetry

from the GRACE mission (Velicogna, 2009), have provided critical observations of the ice

sheets’ mass balance, indicating a mass loss at an accelerated rate (Rignot et al., 2011).

Nowadays, SLE estimates about ice sheets provide values of ca. 7 m, 3.2 m and 60 m of

GMSL rise if Greenland, West Antarctica (the unstable part of the continent) and East

Antarctica would totally melt, respectively (Lemke et al., 2007; Bamber et al., 2009; Ivins,

2009; Joughin and Alley, 2011).

Also mountain glaciers and small ice caps give their contribution to GMSL change

through the imbalance between mass gain/loss processes. Since the early 1990s, continen-

tal glaciers have been subjected to persistent retreat (Meier et al., 2007), as they are very

sensitive to global warming and climate change. Indeed, geodetic and glaciological obser-

vations enlighten that, during the decade 2010 to 2019, the rates of early 21st–century

mass loss are, since 1850, the highest (Zemp et al., 2015). However, the melted water

from glaciers usually does not always flow directly into the ocean and, along the path, can

evaporate, feed rivers or lakes (then might be anthropogenically exploited), or refreeze.

A further contribution to changing GMSL, as part of the mass component, arises

from the storage of water on land. The so–called “land water storage” term accounts for

rivers, lakes, dams, wetlands, soil moisture, groundwater storage, permafrost and snow

cover. Thus, the variability of this term is influenced by both climate variations and

human activities (e.g., aquifers exploitation and mining for irrigation and consumption,

dams construction, deforestation, urbanization). The latter, directly induced a lowering

of GMSL by about -0.5 mm·year−1 during the second half of the twentieth century (Chao

et al., 2008), and especially during the 1970s (Frederikse et al., 2020), due to a sharp
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increase of dam building and water impoundments. Conversely, over the same period, a

few tenths of mm·year−1 sea level rise have been associated with groundwater extraction

and crop irrigation (Wada et al., 2012).

1.1.2 Regional and local processes

At regional (e.g. Mediterranean Sea) and local scales sea level changes could be

amplified or mitigated by several factors (Stammer et al., 2013; Palmer et al., 2020), with

respect to the global ocean.

The change in mean sea level associated with the circulation is referred to as the ocean

dynamic sea–level change. By definition, this component of sea level has a zero global

mean but varies at the regional scale, especially in semi–enclosed basins (Pinardi et al.,

2015; Bilbao et al., 2015). The rise or depression of the sea surface due to atmospheric

pressure is usually included in this component.

Regionally, the contemporary redistribution of mass between terrestrial ice and water

reservoirs and the ocean lead to changes in sea–level due to the so–called GRD component

(Larour et al., 2017; Mitrovica et al., 2018), i.e. sea–level variations induced by Earth

Gravity, Earth Rotation and viscoelastic solid Earth Deformation. In detail, terrestrial

mass loss generates a localized elastic solid Earth uplift and relative sea–level fall near

the source (within 2000 km), while farther away (>7000 km from the source) the relative

sea level rises due to gravitational effects. Furthermore, the effect of Earth’s rotation

increases the spatial variability of sea level pattern globally, while further changes are

induced by loading effects and self–attraction linked to the redistribution of ocean water

within the ocean itself.

The ongoing GRD in response to past changes in the redistribution of water and

ice on the Earth’s surface is defined as the Glacial Isostatic Adjustment (GIA). GIA

is commonly referred to as the viscoelastic Earth’s crust and mantle rebound to last

deglaciation, causing geoid changes and movements of the solid Earth following mass

redistribution, on a timescale of decades to tens of millennia. GIA induced land motion is

described by global geodynamic models (Lambeck et al., 2014; Peltier et al., 2015), which

related uncertainties underlie in the complexity of the rheological structure of the solid
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Earth that drives the long–term viscoelastic deformation (Whitehouse, 2018).

At the coastal scale, GIA and GRD effects on relative sea level might be strongly

overwhelmed by the influence of local vertical land motion (VLM) processes, impacting

the reliability of sea–level rates assessment (King et al., 2012; Wöppelmann et al., 2013).

VLM is the variability in height of both the land surface and sea floor, induced by the

concurrent effect of several causes, of natural and anthropogenic origins, or just some of

them. In detail, terrain subsidence is driven by compaction of alluvial sediments, local

tectonic activity (also linked to possible volcanic activities and earthquakes), drainage of

peatlands, and groundwater mining and fluids exploitation by removal of water, oil, and

gas.

The combination of short–term phenomena, like storm surges, tides and waves, can

lead to exceptional high or low local sea–surface height commonly referred to as extreme

sea level (Figure 2). Extreme sea levels can be influenced by changes in the frequency,

tracks, or strength of weather systems, or anthropogenic modifications. Wind–waves con-

tribute as well to changing coastal sea level. Extreme Total Water Level is the extreme

still water level plus wave setup (time–mean sea level elevation due to wave energy dissipa-

tion). When considering coastal impacts, swash (vertical displacement up the shore–face

induced by individual waves) is also important and included in Extreme Coastal Water

Level.

At last, another component of coastal sea level is represented by sediment supply

delivered to the coast by rivers, which can drive the shoreline evolution in terms of retreat

or progradation trends. Riverine sediment discharge, that represents the primary feeding

source for LECZs (Nicholls et al., 2007; Syvitski et al., 2009), has decreased dramatically

over the 20th century (Llorens et al., 1997; Walling, 2006; Syvitski and Kettner, 2011;

Weston, 2014; Buendia et al., 2016) and is expected to fall further (Zarfl et al., 2015;

Dunn et al., 2019). Its role is largely variable due to the climatic condition and human

impacts within a specific area, the lithologies of river basins and the dimension of the

catchment area (Milliman, 2001; Vörösmarty et al., 2003; Syvitski et al., 2005).
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1.2 Techniques for measuring sea level

Currently, sea level change is mainly measured over time through the use of two in-

struments: satellite altimetry (SA) and tide gauges (TG) (Figure 3). The former acquires

sea level data relative to a geocentric reference, usually referred as the absolute sea level

(ASL, even if the term "geocentric" should be preferred (Gregory et al., 2019)), with a

quasi–global spatial coverage, while the latter measures sea level in relation to a local

ground benchmark, referred as relative sea level (RSL), thus directly affected by VLMs

and providing punctiform information in space.

Figure 3: In–situ (tide gauge) and space–borne (satellite altimeter) sea level measurement tech-
niques. GNSS allows the connection of relative (S) and absolute (N) sea level by monitoring the
tide gauge benchmark vertical variation (U). From Marcos et al. (2023).

Although the lack of contamination of VLMs in SA, the reliability of these mea-

surements decrease towards the coast preventing accurate assessments in coastal areas.

Furthermore, SA missions started only in the early 1990s, thereby preventing long–term

sea level assessments, conversely to the TGs which in some cases started recording in

the 1800s. Therefore, the existence of these spatial and temporal divergences requires an

integrated approach, especially when a high–detail local–scale evaluation is needed.

Despite the fact that the SA and TG time series are presently the two major sources of

information for sea level, the disparity in their observational capacity remains an unsolved

issue. Furthermore, SA and TG data sets had low and high collection rates, respectively
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(Cipollini et al., 2017). Only SA measurement allows for the observation of fluctuation in

sea level from the open ocean to the coastal area, and therefore is regarded as critical for

providing perspective at the regional and global scales without clarifying some fundamen-

tal coastal processes, which are instead recorded by TGs. RSL and ASL fluctuation, as

well as VLM, are connected by the Sea Level Equation (SLE), which reads in its simplest

form (Farrell and Clark, 1976):

S = N − U

where S denotes the RSL variation, N the ASL variation, and U the vertical displacement

(see also Figure 3). According to this equation, the sea–level change at the pier is the

combination of the absolute seal level variation in a geocentric reference frame minus the

vertical displacement at the TG coastal site.

Depending on the scope of a specific study or assessment, VLMs must be elimi-

nated if one is interested in the climate–related components of sea level rise. Conversely,

relative sea level rise (including VLM as recorded by tide gauges) is of importance for

understanding the coastal implications of sea level rise.

1.2.1 Satellite altimetry

The first SA missions occurred in the 1970s and 1980s, however, the high–precision

(centimeter–level) satellite altimetry era did not begin until 1992, with the launch of the

TOPEX/POSEIDON satellite. SA missions began with the intention of giving, among

other things, an assessment of quasi–global coverage sea level in the Earth’s mass center

reference system. ASL is the difference between the satellite’s altitude over the reference

ellipsoid and its height above the immediate sea surface (Figure 4), as determined by

emitting microwave radiations toward the sea surface that are partially reflected to the

satellite (Chelton et al., 2001; Andersen and Scharroo, 2011).

As a result of this configuration, sea level measurement from altimetry is influenced

by a number of sources of uncertainty. Radar altimeters transmit more than 1700 pulses

per second toward the Earth then receiving back echoes from the sea surface. The elec-

tromagnetic radiation transmitted by the satellite is attenuated as it travels through the

atmosphere and eventually hits the sea surface. As the signal travels back to the satellite,
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it is further attenuated passing by the atmosphere (see below). Furthermore, surfaces with

steep slopes, as in the case of rough seas, make proper interpretation more challenging.

Indeed, the pulse might impact the peak of a wave, as well as a sequence of additional

crests, bringing the reflected wave amplitude to increase more gradually than in the flat

ocean case (Brown, 1977). The return signal’s strength is also proportional to sea surface

roughness, that is closely connected with near–surface winds (Chelton and McCabe, 1985;

Nerem and Mitchum, 2001).

Figure 4: Altimetry heights naming convention (from DUACS).

In detail, SA uncertainties and errors are addressed by accounting for several correc-

tions. Sources of error are usually grouped in four main categories, namely the instru-

mental errors, satellite position errors, signal propagation errors, and geophysical errors.

Instrumental errors are related to the oscillator drift, pointing angle errors, altime-

ter calibration, and Doppler shift effect. All of these (among others) must be properly

accounted for in order to achieve accurate measurements (see e.g. Chelton et al. (2001)).

The satellite position errors arise from the perturbation that a number of forces
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cause on the motion of a near Earth satellite, i.e. Earth gravity field, perturbations

linked to the Sun and Moon, Earth and solar albedo radiation pressure, and atmospheric

drag; since the beginning of the satellite altimetry era, many attempts have been made

to create techniques capable of decreasing orbit errors, as high accuracy is essential for

oceanographic applications (Tapley et al., 1994; Le Traon and Ogor, 1998; Rudenko et al.,

2012; Couhert et al., 2015). The ability to identify the satellite orbit (Figure 4) with high

precision is a critical aspect in satellite altimetry, as any inaccuracy in the satellite orbit

radial component would directly influence the measurement.

The signal propagation errors account for two distinct sources of error, that is the

sea–state bias and atmospheric refraction. The former is linked to the state of the sea

surface (i.e., the roughness) at the moment of the measurement and its related effect

on the reflected signal, commonly corrected employing ocean waves models (Tran et al.,

2010). Signal’s path delay is a common way to represent the effects of atmospheric

refraction. The existence of the atmosphere slows the altimeter signal’s propagation,

increasing the recorded two–way travel time. If atmospheric refraction is not corrected,

the range estimate is longer than the real range. Tropospheric and ionospheric (Imel,

1994) refraction corrections are accounted individually; tropospheric correction is further

subdivided into wet (Keihm et al., 1995; Fernandes et al., 2015) and dry (Chelton et al.,

2001) tropospheric delay.

As long as altimetry detects the instantaneous sea surface height, each measurement

is inevitably influenced by time–dependent geophysical processes such as ocean, solid

earth and polar tides, ocean loading, and high and low frequency sea surface reaction to

air pressure and wind stress. The latter effects are both accounted in the so called Dynamic

Atmospheric Correction (DAC; Carrere and Lyard (2003)). Reanalysis of hydrodynamic

ocean models, forced with atmospheric data, are usually considered to account for the

direct dynamic response of the ocean to pressure variations at high frequencies (<20

days; Carrere and Lyard (2003)), which also consider the wind effect that prevails around

the 10 days period (Fukumori et al., 1998; Ponte and Gaspar, 1999). For period >20

days, only atmospheric pressure impacts are generally eliminated, typically by assuming

an inverse barometer (IB) adjustment, i.e. an increase (decrease) of 1 mbar in atmospheric
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loading locally pull down (push up) the sea surface of about 1 cm (Dorandeu and Traon,

1999).

Because the travel time must be precisely known, i.e. a precision of 30 picoseconds

is necessary to attain a height accuracy of 1 cm, the actual measurements are generated

by averaging a large number of individual radar echoes. After calculating the range, the

sea surface height (SSH; see also Figure 4), i.e. the sea surface above a reference ellipsoid,

may be estimated. The reference ellipsoid is a theoretical surface that is easier to deal

with than the geoid. The latter is an equipotential surface of the Earth’s gravity field and

can be described as the sea surface’s static portion (Gregory et al., 2019); in absence of

external forces (Pugh and Woodworth, 2014), this surface would be equivalent to mean sea

surface (MSS; Figure 4). Actually, due to ocean currents and other perturbing processes,

sea level might diverge from the geoid by a few meters in what is known as Absolute

Dynamic Topography (ADT; Figure 4) and its temporal mean (called Mean Dynamic

Topography, MDT; Figure 4). The latter represents a quasi–stationary part of the ocean

topography which measurements are difficult to achieve, partly due to limited knowledge

of the geoid, especially at small spatial scales (on the order of km to tens of km). Thus, sea

level changes from SA are computed as sea level anomalies (SLA; Figure 4) with respect

to the MSS over a temporal reference (currently 1993–2012).

Consecutive and ongoing high–precision SA missions have been compared and cal-

ibrated since 1992, to give a consistent and uniform quasi–global coverage of sea level

record. Each satellite mission is validated with in–situ TG data (Mitchum, 2000), im-

proving the uncertainty characterisation of global and regional mean sea level trends with

an accuracy of ca. 0.5 and 2 mm·year−1, respectively (Ablain et al., 2017, 2019). However,

it should be pointed out that SA observations in shallow water and close to shorelines

(<20 km within the coast), with respect to the open ocean, are impacted by both the

contamination of land in the satellite footprint and the less accurate geophysical correc-

tions (Cipollini et al., 2017; Vignudelli et al., 2019). The necessity for accurate coastal

altimetry data has resulted in the development of sophisticated altimetry products in

recent years within international projects (e.g. ESA–CCI, COASTALT), with enhanced

reprocessing and specific adjustments aiming to extend valid measurements towards the
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coast (e.g., X–TRACK/ALES; Passaro et al. (2014); Birol et al. (2021)).

Various national and international agencies and projects make multi–mission satel-

lite altimetry measurements nowadays available in standardized formats. In addition to

along–track data for each particular satellite mission, gridded sea level fields, particularly

valuable for regional and local sea level assessments, are generated considering measure-

ments from simultaneous missions (Le Traon et al., 1998; Legeais et al., 2018). Along–

track and gridded global and regional products are both distributed with different spatial

resolution via data repositories such as the Copernicus Climate Change Service (C3S,

https://climate.copernicus.eu/), Copernicus Marine Service (CMEMS, https://

marine.copernicus.eu/it), AVISO (https://www.aviso.altimetry.fr/en/home.html)

or international programs such as the ESA–CCI (https://climate.esa.int/en/).

1.2.2 Tide gauges

Due to their relevance for maritime navigation and harbor operation and safety,

direct monitoring of RSL through TGs extends back to the 18th Century (Matthäus,

1972; Wöppelmann et al., 2008), making credible models of sea–level fluctuation and its

relationship to climate change conceivable. TGs offer a measure of the sea level in relation

to the pier to which the TG is attached, and hence it is frequently referred to as RSL.

In detail, RSL measurement is referred to a benchmark on land ideally located on a

stable surface, in order to provide a reliable local height reference level. The stability and

maintenance of the benchmark, hence the continuity of the TG datum, is critical to achieve

a consistent RSL time series. However, this stability in time cannot always be guaranteed

and unidentified or unreported variations in the vertical position of the datum might

seriously compromise the interpretation of RSL changes (Zerbini et al., 2017). Thus, the

elevation of the benchmark should be measured and checked periodically in relation to a

group of other local benchmarks. Furthermore, also the vertical position of the TG itself

should be periodically monitored through space techniques and high–precision leveling

(Wöppelmann and Marcos, 2016; Woodworth et al., 2017).

National and subnational authorities, as well as research institutes, deploy, main-

tain, and operate tide gauges. Most institutions currently offer their tidal gauge network
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observations via their own website and data servers, with varied formats, quality crite-

ria, and restrictions. Furthermore, there are a number of international data assembly

centers that gather, store, regulate, standardize, and disseminate tidal gauge data and

metadata. One of the most outstanding worldwide is the Permanent Service for Mean

Sea Level (PSMSL), founded in 1933 and hosted by the National Oceanography Center

in Liverpool. The PSMSL has the biggest TG database where more than 2300 TG time

series are collected (Figure 5a), updated on a regular basis, reduced to a common datum,

i.e. the Revised Local Reference (RLR) (Holgate et al., 2013; PSMSL, 2022), and dis-

tributed through the website (www.psmsl.org) as monthly and annual mean time series.

Prior to generating the monthly and annual averages, low–frequency data are generated

by filtering high–frequency readings to hourly values and these to daily means.

Figure 5: Permanent Service for Mean Sea Level (PSMSL) TG database overview. (a) The
complete database; (b) stations with a record of >60 years of data. From Woodworth et al.
(2011).

Despite their extended coverage (with more than 60 years of data in several cases,

Figure 5b), TGs data are spatially constrained due to their diverse geographical distri-
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bution. Since the 1950s, TGs measurements have grown, particularly in the Northern

Hemisphere (Gröger and Plag, 1993). This constraint creates a bias that may impede

accurate and reliable global sea level estimation.

Developed for distinct objectives, such as observing the tide within harbors, TG

data used for long–term sea–level studies are inevitably contaminated by the pier’s VLM.

Several studies (Douglas, 1991, 1997, 2001; Church and White, 2011) dealt with this prob-

lem only accounting for GIA, as it can be described by global physical models; however,

as previously stated in Section 1.1.2, local VLMs might overwhelm any other sea–level

contributor, as in the case of the Mediterranean Sea, where GIA can be irrelevant or

negligible. This issue was been partially solved by the co–location of GNSS (Global Nav-

igation Satellite System) at the TG site. However, because this approach just began in

the late 1990s (Zerbini et al., 1996; Bouin and Wöppelmann, 2010), GNSS installations

do not cover neither the whole time period nor most TG sites (Santamarìa-Gòmez et al.,

2012).

1.3 Overview of own research

Coastal environment represents the land–ocean transition and its dynamics is inten-

sively driven by the interaction of both natural and anthropogenic influences, subjected to

non–linear oscillations over time. Climate change, sea–level rise and human impact have

led over the last century to a generalized increase in coastal erosion worldwide (Church

et al., 2013). Shoreline erosion was observed in many areas of the world during the twen-

tieth century (Bird, 1987), but it is unclear how much this is due to climate–related sea

level rise (Vellinga and Leatherman, 1989) or to more local non–climatic factors such as

ground subsidence due to underground fluids exploitation, decrease in sediment supply,

coastal management, waves and currents. Thus, the purpose of this PhD project is to

understand some of the processes that governed the complex, non–linear evolution of sea

level over different temporal and spatial scales. In detail, the main focus is on the sea–

level change occurred at the scale of the Emilia–Romagna (ER) coastal stretch (Figure

6) over both the satellite altimetry era (1993–2019) and the last century (1920–2020).

The ER coast is a 130–kilometer–long stretch of highly urbanized LECZ (1.45 m
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maximum average elevation) located on the eastern edge of the Po Plain in Northern

Italy (Figure 6). Coastal anthropization of the whole ER coast began in the 1950s (Lorito

et al., 2010) becoming, over the next few decades, one of the most popular tourist sites

in Italy, as well as a major source of revenue for the region’s economy.

A significant amount of the ER coastline area is now below sea level, which would

increase the impact of future sea–level rise. According to Perini et al. (2017), the combined

effect of the IPCC’s worst scenario (Church et al., 2013) and present local subsidence

would result in a further expansion (346 km2) of the regions below mean sea level in 2100

compared to 2012. As a result, determining the relative sea–level (RSL, i.e., the local sea

level relative to a benchmark on land) change at the local scale for the ER coast is critical

for the territory’s and its delicate environment’s management.

The main question that drives this work is: Which is the sea–level variability

for the Emilia–Romagna coastal area in the framework of the Mediterranean

Sea? To answer this question, three sub–questions were formulated:

1. How sea level has changed at the Emilia–Romagna coastal scale as resulting from

different observative approaches?

2. How natural and anthropogenic footprints impacted dynamics of the catchment

areas and, indirectly, the coast?

3. What is the main variability of sea–level trends in the Mediterranean Sea?

In order to do that, data from available local TGs and up to date SA products, as

well as climatic parameters (e.g. air temperature, rainfall, river discharge) representative

of the ER inland territory, have been considered. Furthermore, water temperature and

salinity profiles from a regional reanalysis are considered for the whole Mediterranean Sea

domain. Indeed, different analyses in this study focus on different spatiotemporal scales:

the local sea–level change at the decadal scale (1993–2019, Section 3.1), the modification

occurred at the river basin scale over the last century (1920–2020, Section 3.2), and the

non–linearity in sea level across the Mediterranean Sea over the altimetry era (1993–2019,

Section 3.3).

The study area is described in Section 2, while the results achieved for each analysis
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have been documented in three published research papers, presented in Section 3. Each

sub–section (3.1, 3.2 and 3.3) consists of a manuscript, together with an introductory

page with information about the paper and the open question to which the manuscript

aims to address. At last, Section 4 reports the conclusion of this dissertation, along with

answers to the formulated questions and outlook perspectives, in order to highlight the

still open issues that deserve to be addressed.
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2 Study area

2.1 The Emilia–Romagna coast

The ER coast (Figure 6) is microtidal, characterized by sandy, mostly dissipative

beaches, and generally impacted by low–energy wave climate (Ciavola et al., 2007; Gaeta

et al., 2018) with the significant wave height tipically below 1.25 m. However, storm

surge levels due to water piling by prevailing winds (‘Bora’ with ENE provenance, and

‘Scirocco’ from the SE) and low barometric pressure may almost double the tidal range,

with extreme levels in the order of 1 m in the 1– to 10–year return period, causing extensive

inundation and erosion at the coast when associated with storm waves (Armaroli et al.,

2012). At the geological scale, the Po coastal plain is a foredeep basin, characterized by

transgressive–regressive cyclicity of coastal and alluvial deposits overlain by a Holocene

coastal succession, made up of a prograding delta front/beach–ridge sands, typical of a

shallow–marine depositional environment, in a laterally continuous, wedge–shaped body

(Amorosi et al., 1999; Correggiari et al., 2005).

Figure 6: Satellite overview of the ER coast location. Modified from Map Data ©2023 Google.

A critical factor for the morphological evolution of the area is the effect of land sub-

sidence. The coastal area under study suffers from natural and anthropogenic subsidence,

the latter showing higher rates during the period 1950–1980 due to an intense overpumping

of underground fluids (Carbognin et al., 1984; Gambolati et al., 1999; Zerbini et al., 2007).

Since the second half of the 20th century, in fact, the rate of subsidence in the area has

been considerably increased by the groundwater and gas extraction (Teatini et al., 2005),
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with rates locally exceeding natural subsidence by an order of magnitude. This resulted

in local land settlement surpassing 100 cm in a few decades (Aguzzi et al., 2016), while

a following steady decrease in subsidence, reported across the entire ER coast, is widely

attributed to groundwater extraction stoppage, which has forced since the 1970s (Teatini

et al., 2005; Pirazzoli, 1986). VLM estimates based on the regional high–precision level-

ling network, which has been regularly monitored since 1983 by the ER Regional Agency

for Prevention, Environment, and Energy (ARPAE), show average subsidence rates in the

order of 5 mm·year−1 for the last 15 years, decreasing to 3–4 mm·year−1 in the period

2011–2016 (Aguzzi et al., 2016), with peak values in the order of about 20 mm·year−1 still

observed in some areas. Land subsidence has been estimated to have indirectly subtracted

a volume of about 20 millions m3 in the ER littoral area from 1984 to 1993 (IDROSER,

1996) and this has marked consequences on coastal erosion.

The anthropogenic sprawl, and related processes as the underground fluids exploita-

tion, widespread use of coastal defense structure, land–use changes, and modifications

occurred throughout catchment areas, seriously stiffened the ER coastal plain by de-

teriorating its reliability to cope with environmental changes (Carbognin et al., 1984;

Gambolati et al., 1999; Teatini et al., 2005; Elfrink et al., 1998). Indeed, the heavy, an-

thropogenically driven reduction in sediment delivery by rivers (mainly due to sediment

digging and river regulation), mostly occurred between the 1940s and 1980s, has led to

generalized erosion and shoreline retreat. Although safeguard policies for riverbed exca-

vation, introduced by the ER regional government during the early 1980s, were expected

to gradually reverse this, only the amount of suspended material has slowly increased,

whereas fluvial bedload has never recovered (Preti et al., 2008; Aguzzi et al., 2016, 2020).

The combined effects of subsidence, sediment supply shortfall due to river regulation,

dune ridge destruction, the widespread use of coastal defense structures, and increased

anthropogenic pressure (Teatini et al., 2005; Elfrink et al., 1998; Billi et al., 2017; Aguzzi

et al., 2020) make the ER coastal tract especially vulnerable to coastal flooding caused

by storm surges and sea–level rise (Marsico et al., 2017; Antonioli et al., 2017).
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2.2 The river basin scale

The dynamics within a river basin behind a coastal stretch significantly influence the

shoreline evolution. Solid transport by rivers is inevitably linked to soil erosion, primarily

due to agricultural use, and enhanced by local climate, anthropization, morphology and

lithologies. Due to this, we have selected a particularly critical stretch of the ER coast,

located in the northern littoral belt, south of the Po River Delta, receiving inputs from

the Reno and Lamone drainage basins (Figure 7a) for a holistic approach.

Figure 7: (a) Location of the Lamone and Reno river basins in the ER Region and (b) the ER
coastal stretch that receives inputs from both river basins. Modified from Meli and Romagnoli
(2022).

The Reno River, with a length of 210 km and basin area of 4628 km2 (Figure 7a),

constitutes the main river of the ER Region after the Po River, and the sixth nationwide.

It drains both mountains and plain terrains, and it receives as affluents (see Chapter

3.2 for location) a number of natural streams from the Apennines (e.g. Samoggia, Idice,

Sillaro, Santerno and Senio) and artificial channels in the plain (e.g. Navile and Savena

Abbandonato). Its fluvial regime is mainly controlled by rainfall (1000 mm·year−1 on

average), with river floods mainly in Spring and Autumn (ARPA, 2002; Toreti et al.,

2009; Crespi et al., 2018). The Reno River was initially merged in the 18th century to

the main paleo–Po branch at that time (called Primaro) and developed in a northward

oriented mouth (Figure 8). Since the beginning of the 20th century, the Reno river delta

underwent further natural shifting and geomorphological evolution (Bondesan et al., 1978)
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to its gradual dismantling (Aguzzi et al., 2020).

The Lamone river basin (ca. 520 km2, Figure 7a) is much smaller than that of the

Reno river; its sediment supply provides an input source to the coastal budget of this

area. However, the marked subsidence affecting the river mouth area partly nullifies this

contribution (Preti et al., 2008).

Figure 8: Planimetric evolution of the Reno River mouth between 1830 and 1968. Modified from
Bondesan et al. (1978).

The most drastic shoreline erosion occurred north of the Reno River mouth during

the periods 1954–1988 (Figure 8), was mainly due to extensive groundwater pumping

from the regional multi–aquifer systems as a response to growing demand for domestic,

agricultural and industrial uses (Teatini et al., 2005). Furthermore, the location in this

very critical coastal sector of the two gas reservoirs exploited by ENI S.p.A. in the wells

Agosta 1 and Dosso degli Angeli is considered to have had a marked impact on the ground

lowering (Comerci and Vittori, 2019).

In particular, at Dosso degli Angeli gas extraction site (Figure 7b), active between

1971 and 2004, about 40 cm of ground lowering have been estimated for the period 1984–

2015 (Aguzzi et al., 2020). In the last two decades, a decay of ground lowering was

observed, although estimated rates are not always coherent among different data sources

and observative techniques (Simeoni et al., 2017; Comerci and Vittori, 2019; Aguzzi et al.,

2020). However, production at this gas field resumed in 2011 and is expected to continue

until 2023. This should result in a renewed high anthropogenic subsidence, possibly not
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evident yet in recent data (Aguzzi et al., 2016, 2020) but to be taken into account in

the overall subsidence affecting the area (Simeoni et al., 2017). According to Comerci

and Vittori (2019), the simulation of the total expected subsidence by 2060 due to gas

production exceeds 30 cm at Dosso degli Angeli site; whatever the amount of subsidence

will be in the next years, this should have important consequences in terms of coastal

vulnerability in this area, where the very low height of the beach (less than 1–1.5 metres)

causes its susceptibility to flooding and extreme events.

In terms of coastal dynamics and sedimentary budgets, the coastal area under study

corresponds to the so–called “Macrocell 5” (ca. 20 km long), as delineated by Preti et al.

(2008), bounded by the Porto Garibaldi and Porto Corsini harbors (Figure 7b). The main

drivers of coastal dynamics in this area are the predominant longshore current, diverging

at Reno River mouth (Figure 7b), i.e. north ward directed in the area north of the river

mouth and South–ward directed to the south of it (IDROSER, 1983). Due to this, a wide

stretch of the surrounding coast was previously fed by river sediment.

In the Macrocell 5, sediment is mostly composed of medium and fine sand (mean

grain size: 0.500–0.250 and 0.250–0.125 mm, respectively) in the emerged beach and in

the foreshore, while in the submerged beach the percentage of very fine sands (mean grain

size 0.063–0.125 mm) increases with depth (Aguzzi et al., 2016, 2020). Granulometric

fining seaward is common, and silt is present in significant percentages only below the

depth of 4/6 meters. Clay is locally present in relatively small amounts, being found in

the submerged beach especially in the northern part of the Macrocell, but also at the

Lamone River mouth. In proximity of the Reno River mouth the sediment is relatively

coarser–grained (average size up to 250 mm) with respect to most part of the ER coast,

also in part of the submerged beach (Aguzzi et al., 2020). This is likely due to the gradual

cannibalization of the river mouth sediment and not to present–day fluvial supply, as also

observed by Bondesan et al. (1978) which carried out a sampling of the emerged and

submerged beach in 1971–1972.

When the Reno River sediment supply decreased and the river delta migrated south-

ward being gradually reworked (Bondesan et al., 1978; Aguzzi et al., 2020), the central

portion of this coastal tract (about 13 km from the Lamone river mouth to Lido di Spina)
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underwent erosion, while the northern and southern tracts, lying up–drift with respect

to the Porto Garibaldi and Porto Corsini jetties, still gradually advanced (Aguzzi et al.,

2016). Overall, between 1982 and 2006, in a 5–km long coastal stretch between the Reno

River delta and Lido di Spina 75 hectares of land were lost, with a 200 m coastline retreat

(Preti et al., 2008).

Hard defense structures (e.g. groynes, breakwaters, revetments, sandbag barriers,

etc.) placed in the last decades to protect the coast from erosion, were not effective in

reducing the problem and also interfered with the coastal dynamics and longshore drift

in the Macrocell (Aguzzi et al., 2016). Periodic nourishment interventions have also been

carried out since 1995 by the ER Region at Lido di Spina, north of the Reno River

mouth, although subsequent monitoring showed that the interventions were insufficient

for stabilizing the coastline (Aguzzi et al., 2020).

2.3 The Mediterranean Basin oceanography

Sea level variability at a specific location, as in the case of the ER coast, is inevitably

the response to changes occurred on a sub–basin scale (in this case the Adriatic Sea, Figure

9), driven by processes that act within the sub–basin or elsewhere across the region (i.e.,

the Mediterranean Sea). Indeed, changes and non–linearity in the Mediterranean Sea

oceanography might modify sea–level trends at the local scale, due to a chain of changes

which propagate among the sub–basins through the thermohaline circulation and mass

redistribution (Robinson et al., 2001; Von Schuckmann et al., 2019). For this reason, the

study of the sea level at a local scale must always take into consideration the regional

framework.

The Mediterranean Sea (Figure 9) is a semi–enclosed, mid–latitude sea linked to the

North Atlantic Ocean by the Gibraltar Strait, where water, heat, and salt are exchanged.

Its articulated physiography defines different sub–basins as the Western Mediterranean,

Tyrrhenian, Ionian, Southern Central Mediterranean, Southern Crete, Levantine, and two

peripheral seas known as the Adriatic and Aegean, all connected by channels and straits

(Figure 9).

The Mediterranean receives mass from the Atlantic Ocean to compensate for per-
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sistent surface water loss, which is primarily caused by evaporation processes (due to

rising sea surface temperature) and a persistent freshwater deficit (Romanou et al., 2010;

Tanhua et al., 2013; Pastor et al., 2018), resulting in basin–scale salinification (Grodsky

et al., 2019), that is, an increase in sea surface salinity. Changes in thermohaline proper-

ties have been revealed for surface (0–100 m) and intermediate (100–400 m) layers, with

the Levantine water salinity and temperature characterized by rising trends stronger than

those observed at intermediate layers in the world ocean (Schroeder et al., 2017; Fedele

et al., 2021).

Figure 9: The Mediterranean Sea and related sub–basins: (a) Western Mediterranean, (b)
Tyrrhenian, (c) Southern Central Mediterranean, (d) Ionian, (e) Adriatic, (f) Aegean, (g) South-
ern Crete, and (h) Levantine. Modified from Galassi and Spada (2014).

Excess evaporation over precipitation produces high–salinity waters that drive and

maintain the thermohaline circulation in the Mediterranean Sea via a large salinity con-

trast that forms between the Levantine waters and the inflowing waters at Gibraltar

(Lascaratos et al., 1993; Robinson et al., 2001). Basinwide, the thermohaline circulation

is limited to the surface and intermediate layers, while the deep circulation is mainly

controlled by a north–south temperature gradient, where winter air–sea heat losses and

vertical convection are the primary forces (Gačić et al., 2013). Circulation within the

basin (Pinardi et al., 2015) reflects its complexity, with cyclonic (anticyclonic) gyres dom-

inating the northern (southern) regions, with the exception of the northern Ionian Sea,

where reversal episodes of surface circulation were observed at the quasi–decadal time

scale (Gačić et al., 2013; Menna et al., 2019).

The semi–enclosed conditions characterizing the Mediterranean Sea often lead to di-
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vergences among global sea–level trends and those measured within the basin, even with-

out matching the values observed for the nearby Atlantic Ocean (Tsimplis and Baker,

2000). The mass component is considered the dominant contributor to the mean sea level

tendency in the Mediterranean Sea (Calafat et al., 2010; Pinardi et al., 2014), while the

steric component accounts for approximately 20% of the total variance (Calafat et al.,

2012). This contrasts with the steric influence at the global scale, which explains approx-

imately 50%–70% of the total sea level variability (Storto et al., 2019). However, this is

not the case for both the Aegean and Levantine, as a steric contribution of approximately

52% has been found by Mohamed and Skliris (2022), mainly due to the thermosteric effect

(Vera et al., 2009).

Strong differences in sea–level trends at the sub–basin scale are a well–known aspect

of the Mediterranean (Bonaduce et al., 2016; Skliris et al., 2018; Mohamed et al., 2019),

in which variability and complexity arise from thermohaline changes and local circulation

(Menna et al., 2012, 2019, 2021; Mauri et al., 2019; Poulain et al., 2021). For instance, the

Ionian is considered a falling sea level sub–basin (Cazenave et al., 2002; Fenoglio-Marc,

2002), in contrast to other sub–basins, primarily because of complexities and changes in

the local circulation pattern (Pinardi et al., 1997; Malanotte-Rizzoli et al., 1997, 1999).

A direct relationship between sea surface temperature and sea level in the Mediter-

ranean has been demonstrated in previous studies (Cazenave et al., 2001, 2002; Fenoglio-

Marc, 2002), highlighting a continuous and fast–rising trend associated with SST from

1992 to 1999 and for all sub–basins, except for the Ionian. Large–scale climatic modes

also influence long–term and inter–annual variability of the Mediterranean sea level (Vigo

et al., 2011; Calafat et al., 2012; Landerer and Volkov, 2013; Tsimplis et al., 2013), such as

the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO). The

NAO, in particular, affects variations in atmospheric sea–level pressure in the Mediter-

ranean (Tsimplis and Josey, 2001) and modulates wind and oceanic circulation near

Gibraltar, impacting net water flow exchange with the Atlantic Ocean (Menemenlis et al.,

2007; Tsimplis et al., 2013). Instead, AMO has a strong relationship with heat and salt

content (Iona et al., 2018), impacting SST and sea evaporation (Marullo et al., 2011).
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Overview:

In this study, we analyze the sea–level variation for the Emilia–Romagna coastal area by

selecting three sites along the coast: Porto Garibaldi, Marina di Ravenna, and Rimini.

These are the only sites where a tide gauge in operation currently exists, although record-

ing on different time intervals. For each site we also identify the closest satellite altimetry

cell to put the relative sea level observed at tide gauges in the framework of the ongoing

geocentric sea level for the region.

Open question:

How sea level has changed at the Emilia–Romagna coastal scale as resulting from different

observative approaches?
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Abstract: Coastal flooding and retreat are markedly enhanced by sea-level rise. Thus, it is crucial to
determine the sea-level variation at the local scale to support coastal hazard assessment and related
management policies. In this work we focus on sea-level change along the Emilia-Romagna coast,
a highly urbanized, 130 km-long belt facing the northern Adriatic Sea, by analyzing data from three
tide gauges (with data records in the last 25–10 years) and related closest grid points from CMEMS
monthly gridded satellite altimetry. The results reveal that the rate of sea-level rise observed by
altimetry is coherent along the coast (2.8 ± 0.5 mm/year) for the period 1993–2019 and that a negative
acceleration of −0.3 ± 0.1 mm/year is present, in contrast with the global scale. Rates resulting
from tide gauge time series analysis diverge from these values mainly as a consequence of a large
and heterogeneous rate of subsidence in the region. Over the common timespan, altimetry and tide
gauge data show very high correlation, although their comparison suffers from the short overlapping
period between the two data sets. Nevertheless, their combined use allows assessment of the recent
(last 25 years) sea-level change along the Emilia-Romagna coast and to discuss the role of different
interacting processes in the determination of the local sea level.

Keywords: sea level; Adriatic Sea; satellite altimetry; tide gauges; vertical land movements; cli-
mate change

1. Introduction

Sea level lies among the 54 Essential Climate Variables (ECVs) that represent the
Earth system’s key parameters, as defined and periodically assessed by the Global Climate
Observing System (GCOS), in support of the United Nations Framework Convention
on Climate Change (UNFCCC) and of the Intergovernmental Panel on Climate Change
(IPCC). Direct observation of the sea level dates back to the 18th century [1] and this made
possible realistic models for the sea-level variation and its interconnection with climate
change. The ongoing sea-level change is the product of a continuous, mutable, and complex
interaction among several components through the whole Earth system, combining natural
and anthropic causes. It is commonly recognized that the increase in anthropogenic
greenhouse gasses emission in the atmosphere, plus a small increment of natural solar
irradiance, has led to a progressive effective radiative forcing (ERF) growth since the
1970s [2], hence to climate warming. More than 90% of the heat increase in the climate
system, derived from the ERF, has been stored by the ocean, with the consequential thermal
expansion and sea-level rise. At global scale, there is a general consensus that sea level
has been rising at 1.7 ± 0.2 mm/year over the last century [2], and at 3.3 ± 0.5 mm/year
over the last 25 years [3]. This is not a steady process since at both temporal scales,
a positive acceleration (0.084 ± 0.025 mm/year2) was also confirmed [4,5]. Presently,
there is the virtual certainty that sea-level rise and climate change will bring to society
and the environment significant consequences, especially in low-elevation coastal zones
where more than 620 million people live presently, a number that is expected to double
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by 2060 [6,7]. This enhances the climate-related concern about the sea-level rise impact at
global scale and at coasts.

Satellite radar altimetry (SA) missions started in the early 1990s with the goal of
providing, among other data, a fortnightly measure for the global sea surface height (SSH)
in the reference system of the Earth’s mass center. Given its reference frame, this is com-
monly referred to as the absolute sea level (ASL). SSH represents the difference between
the satellite altitude above the reference ellipsoid and the height of the satellite above the
instantaneous sea surface, measured by transmitting microwave radiations toward the
surface which are partly reflected to the satellite [8]. As a consequence of this configuration,
SSH measurements are affected by several sources of uncertainties. Such uncertainties
are resolved by compensating for the effect of instrumental drift, signal refraction pass-
ing through the atmosphere, Glacial Isostatic Adjustment (GIA), tides and atmospheric
pressure influence whose correction is commonly known as the Dynamic Atmospheric
Correction (DAC). However, in shallow water and at the coast SA data are influenced and
contaminated by both the presence of land in the satellite footprint and the spatio-temporal
scale reduction of atmospheric and oceanographic processes with respect to the open
ocean [8–10]. The need for reliable coastal altimetry data has led over recent years to the
development of new sophisticated altimetry products, where the improved reprocessing
and dedicated corrections aim to extend valid measurement to within < 20 km from the
coast [11–13].

On the contrary, tide gauges (TGs) provide a measure of the sea level with respect
to the pier at which the TG is attached and for this reason it is commonly referred to
as relative sea level (RSL). The largest TG database is the Permanent Service for Mean
Sea Level (PSMSL), where almost two thousand TG time series are collected, periodically
updated, and reduced to a common datum, producing the Revised Local Reference (RLR)
dataset [14–16]. Developed for different purposes, i.e., the observation of the harbor tide,
currently TG data used for long-term sea-level studies suffer from the contamination by
the vertical land movement (VLM) of the pier itself. This problem was sorted out in the
recent past by the co-location of GNSS (Global Navigation Satellite System) at the TG site.
However, this practice only started since the late 1990s [17,18] and for this reason it does
not cover the whole time series at most of the TG sites. Despite the long period coverage
(since 19th century for some specific cases) TGs data are geographically limited because of
their heterogeneous spatial distribution. TGs measurement has increased since the 1950s,
primarily throughout the Northern Hemisphere [19]. This limitation generates a bias that
may hinder accurate and reliable sea level consideration at global scale.

Despite SA and TG time series currently represent the two main source of information
for the sea level, the contrast between their observational ability remains an unresolved
point. RSL, measured by the TGs, reflects the local variations in sea level and it is influenced
by the VLM effect and the coastal processes, differently from the SA ASL records that
provide geocentric sea-level variations. SA and TG data sets are, moreover, characterized by
low and high acquisition rate, respectively [11]. Only SA measurement allows observation
of the variability on sea level from the open ocean towards the coastal area and it is
considered essential for giving perspective at regional and global scale without resolving,
however, some key coastal processes, which instead are recorded by TGs. RSL and ASL
variation and VLM are linked by means of the Sea Level Equation (SLE) that, in its simplest
form, reads [20]:

S = N − U (1)

where S is the RSL variation, N represents the ASL variation and U is vertical displace-
ment [21,22]. This equation tells that the sea-level change at the pier is the combination
of the absolute seal level variation in a geocentric reference frame minus the vertical
displacement at the TG coastal location.

At global scale, the drivers of sea-level change are primarily related to variations in
steric contribution [23,24] and ocean mass component [25–27]. By contrast, at regional
(e.g., the Mediterranean Sea) and local scale the sea-level change could be amplified or
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mitigated by several other drivers [28,29] such as VLMs, ocean dynamics (which become
significant in semi- enclosed basins [30,31]) and the GIA (i.e., the visco-elastic crustal
response to the inhomogeneous loading redistribution of ice melted water throughout
continents and ocean [32–34]). The sea-level variability observed in the Mediterranean Sea
is the consequence of several factors among which the circulation forced by heat and buoy-
ancy flux at the surface, wind stress, and water exchange through the Strait of Gibraltar,
varying periodically the water mass amount within the entire domain [30,35,36]. Regional
sea-level variations are, in fact, influenced also by the balance between evaporation pro-
cesses and precipitation–river runoff in the basin [37,38]. Wind stress can also lead to large
Mediterranean sea level, generating periodic non-steric fluctuations due to mass trans-
portation through Gibraltar from Atlantic [39,40]. A critical role of atmospheric forcing
on sea-level change since the 1960s, not constant in time, has been documented for the
Mediterranean Sea [41]. Indeed, several studies found a direct influence of inter-annual,
decadal, and multidecadal climate fluctuations on sea level, corresponding to several
tenths of mm/year [42,43]. This non-stationary variability is correlated with natural modes
of the coupled ocean–atmosphere system such as El Niño Southern Oscillation (ENSO),
North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO) [44,45].

The Emilia-Romagna (E-R) coast is a highly urbanized, 130 km-long belt of low-
elevated area (1.45 m maximum average elevation), located at the eastern margin of the Po
Plain in Northern Italy (Figure 1). Coastal anthropization started in the 1950s [46], in the
following decades the E-R coast became one of the most attractive tourist destinations in
Italy and an important source for the regional economy. The combined effect of subsidence,
sediment supply deficit due to the marked decrease in fluvial transport, removal of the
dune ridge and increased anthropic pressure, cause the E-R coastal tract to be extremely
sensitive to coastal flooding due to storm surges and sea-level rise [47]. In particular,
a considerable portion of the E-R coastal area is currently below sea level and this would
exacerbate the impact of future sea-level rise. As shown by Perini et al. [48] the combined
effect of the IPCC worst scenario [2] and of the current local subsidence would cause, at
2100 with respect to 2012, a further extension (346 km2) of the areas below mean sea level.
Also, for this reason, the determination of the relative sea-level (RSL, i.e., the local sea level
relative to a benchmark on land) variation at local scale for the E-R coast is paramount for
the management of the territory and of its fragile environment.

In this paper, we analyze the sea-level variation for the E-R coastal area by selecting
three sites along the E-R coast: Porto Garibaldi, Marina di Ravenna, and Rimini (Figure 1).
These are the only sites where a TG in operation currently exists. For each site we also
identify the closest SA altimetry cell to put the RSL observed at TGs in the framework
of the ongoing ASL for the region. TG times series cover different time spans, and this
complicates the analysis. The main objectives are: (i) to verify the consistency of different
instrumental sea-level records (TG/SA) at each site, by comparing in situ data with the
latest CMEMS (Copernicus Marine Environment Monitoring Service) altimetry products
(see Section 3); (ii) to observe and analyze differences among obtained sea-level data at the
three sites, i.e., at the coastal scale, with a focus on the local variability, heavily influenced
here by VLM; (iii) to assess the recent (last 25 years) sea-level change and if it can be
assumed as a reference for the E-R region, also highlighting the variability of sea-level rates
which strongly depends on the records length and (iv) to discuss this figure in the framework
of similar studies at the basin-scale (Adriatic/Mediterranean), and of climate change-related
processes. The determination of current sea-level rise at regional scale remains a complex task
especially when only short time series are available. However, since this remains a crucial
point in support of coastal hazard evaluation and related management/adaptation policies,
efforts should be made to understand sea-level variability and to describe its intricacy from
the coastal and basin perspective. The paper is organized as follows: Section 2 introduces
the study area, Sections 3 and 4 are dedicated to the description of data and analysis,
respectively. Results are presented in Section 5 and discussed in Section 6. Finally, in
Section 7, conclusions are drawn.
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Figure 1. Satellite overview of the study site. (a) The E-R coast with northern and southern limits marked by red lines,
the location of the selected tide gauges (blue and yellow circles) and their nearest satellite altimetry grid points (green circles).
The blue circle at Porto Garibaldi remarks that, differently from the other two, the TG site is co-located with a GNSS antenna.
(b) map of the surficial (upper 10 m layer) Adriatic current directions and velocity vectors (November 2018 monthly average,
based on the MEDSEA_REANALYSIS_PHYS_006_004 model) [49]. (c) Detailed location of the three tide gauges considered
in this work.

2. Study Area

The coastal belt of E-R is located in the eastern part of the Po Plain, south of the Po
Delta (Figure 1). In geological terms, the Po Plain represents a foredeep basin suffering
from natural subsidence. VLMs are mainly due to the consolidation of Quaternary al-
luvial deposits, with estimated rates along the coastal area of about −1 mm/year and
−2.5 mm/year to the south and north of Ravenna municipality respectively, and twice as
much at the Po river Delta [50]. Long-term VLMs due to tectonic component have been
taken into account by Ferranti et al. [51] and Antonioli et al. [52,53] with rates in the order
of −0.95 mm/year since the Last Interglacial (last 125 kyrs) for the northern E-R coast,
while −0.22 ± 0.05 mm/year represents the glacio-hydro-isostatic contribution estimated
by different GIA models [48]. Since the second half of the 20th century, the subsidence rate
in the area has been markedly enhanced by the withdrawal of groundwater and gas extrac-
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tion [54], with rates locally exceeding the natural subsidence by one order of magnitude.
This caused land settlement locally exceeding 100 cm in a few decades [55]. The following
gradual decrease in subsidence observed for almost the whole E-R coast is commonly
attributed to the groundwater withdrawal cessation, occurred since the 1970s e.g., [54,56],
and it has become more evident in the last two decades [55,57]. Current estimates of VLM
based on the regional high-precision levelling network, regularly monitored since 1983 by
the Regional Agency for Prevention, Environment and Energy of the E-R region (ARPAE),
indicate average subsidence rates in the order of 5 mm/year for the last 15 years, decreasing
to 3–4 mm/year in the period 2011–2016 [55]; however, peak values in the order of about
20 mm/year are still locally observed in the Ravenna coastal tract. The Coastal Geode-
tic Network is now the base for the definition of the orthometric heights along the E-R
coast [58], integrated with InSAR techniques and GNSS measurements. Recently, Montuori
et al. [59] integrating GNSS and multitemporal DInSAR techniques for the monitoring of
land subsidence processes along the coastal plain, obtained average rates >3 mm/year,
increasing to over 5 mm/year for Ravenna and some tracts along the SE coast. Rates of
land subsidence for the Marina di Ravenna dock (from 1970 to present) based on geometric
levelling, InSAR techniques and GNSS measurements, are compared by Cerenzia et al. [60].

From a morphological point of view, the E-R coast is represented by fine to medium-
sand low-gradient dissipative beaches, 60% of which is the seat of hard protection struc-
tures [55]. The E-R coast is in general affected by low-energy waves, with Hs commonly
below 1.25 m and microtidal regime [61,62]. The main storms come from the Bora (north-
east) and Scirocco (southeast) winds, resulting in storm surge levels >1 m on a 100-year
return period [48]. This is a huge concern for such low-elevation coastal zones, exacerbated
by forthcoming climate change effects.

The E-R coast faces the northern Adriatic basin (Figure 1), a shallow sub-basin (a few
tens of m of depth) with a low topographic gradient. The Adriatic is a narrow epicontinental
shelf (800 by 200 km), communicating with the Ionian Sea through the Otranto Strait
(Figure 1). The sea-level variability in the Adriatic Sea significantly differs from the other
Mediterranean Sea sub-basins because of its setting [63–65]. It is dominated by cyclonic
circulation driven by wind and thermohaline currents, mainly represented by three gyres
centered in the southern, middle, and northern sector of the basin; northerly and southerly
currents flow along the eastern (Eastern Adriatic Current, EAC) and western (Western
Adriatic Current, WAC) coast, respectively (Figure 1) [64–67]. Previous analyses of sea-level
rise in the altimetry era found an average rate of 3.2 ± 0.3 mm/year over the 1993–2008
for the Adriatic Sea, not uniform on the whole period, but positive (9 ± 0.5 mm/year)
between 1993 and 2000 and negative (−2.5 ± 0.5 mm/year) between 2001 and 2008 [68].
Similar positive and negative rates before and after 2001 result for the (basin-average)
steric component of sea level, which is correlated with Adriatic Sea level. For the northern
sector of the Adriatic, rates of 4.25 ± 1.25 mm/year for the period 1993–2015 [69] and of
3.00 ± 0.53 mm/year for the period 1993–2018 [70] have been recently estimated.

3. Data

In situ sea-level signals are achieved from the three TGs currently operational along
the E-R coast (Figure 1). These are installed at Porto Garibaldi (TGPG), Marina di Ravenna,
also known as Porto Corsini (TGRA), and Rimini (TGRN). In particular:

TGPG has been operational since July 2009 and it is co-located with a permanent GNSS
(Figure 1) station (GARI) that provides VLM information for this site. Different sources
are freely available for geocentric surface velocity data at GARI [71]. In this work we
considered the GARI time series produced with the INGV (Istituto Nazionale di Geofisica
e Vulcanologia) solution by employing the GAMIT/GLOBK software and expressed in the
IGS14 (International GPS Service) reference frame [72]. Only TGPG and a portion of TGRA
are RLR data retrieved from the PSMSL.

At Marina di Ravenna, different TGs almost continuously collected relative sea-level
data since 1873 [73,74], with a main gap from 1922 to 1933. Presently, data are managed
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by the Italian National Tide Gauge Network (Rete Mareografica Nazionale, RMN) which
refers TG data to a local benchmark, located at the lighthouse, 150 m apart. TGRA has a
large gap between 2016 and 2019 and, for this reason, the time series considered in this
work terminates in December 2015. A permanent GNSS station has operated since 1996
close to TGRA [73] and is currently managed by the Department of Physics and Astronomy
of the University of Bologna (no open data).

TGRN has been in operation since July 2012, it is managed by Hera Group corporation,
and it is not equipped with a GNSS antenna. Despite the shortness of the data and the lack
of a co-located GNSS antenna, TGRN is valuable since it provides the only datum for the
southern portion of the E-R coast.

Both TGPG and TGRA operate with radar systems technology (the former coupled with
a float system sensor, following the Intergovernmental Oceanographic Commission (IOC)
directives [75]) while TGRN operates with a differential pressure transducer. Since only
float systems directly provide a SSH measurement, seawater density and gravitational ac-
celeration are considered to convert pressure measured by TGRN into sea level, while radar
systems are supplied with dedicated hardware and software that directly convert the
measures [76]. Regarding the SA, in this study we use the CMEMS daily gridded dataset
(SEALEVEL_MED_PHY_L4_REP_OBSERVATIONS_008_051), having a spatial resolution
of 0.125 degree x 0.125 degree [77]. This product is processed by the DUACS (Data Unifica-
tion and Altimeter Combinations System) multi-mission altimeter data processing system,
merging data from all the satellites available at a given time [77–81]. We selected the three
closest pixels (SAPG, SARA, SARN) to each of the TG (Figure 1), located at about 5, 13, and
9 km from Porto Garibaldi, Marina di Ravenna, and Rimini TGs, respectively. Each time
series was downsampled from daily to monthly by computing the average for the whole
samples of each month.

4. Analysis

To minimize the contrast between SA and TG time series, some procedures need to be
considered, depending on the purpose of the study. DAC correction in SA (see Section 1)
accounts for the low-frequency response of the sea surface to the atmospheric loading,
known as the Inverse Barometer (IB) effect [82], and for the high-frequency (HF) response
to wind and pressure forcing effect [83]. Since CMEMS products data are corrected by the
DAC, the IB and HF effects must be subtracted from TG data for comparison purposes.
However, the HF effect is negligible on periods longer than 10 days, hence no correction is
needed when monthly averaged data are used [23]. The correction for the IB effect allows
the subtraction of the atmospheric loading contribution from the observed RSL at TG.
The IB effect correction considered in this work is based on the Wunsch and Stammer [82]
formula:

IB(θ,λ,t) = −9.948 (∆rdry(θ,λ,t) - 1013.3) (2)

where ∆rdry(θ,λ,t) and −1013.3 are the local and global (standard) atmospheric pressure
(in millibar) respectively, and −9.948 a constant that accounts for the water density and
gravitational acceleration. The monthly mean time series of atmospheric loading at each
TG was recovered from the ERA5 reanalysis [84] developed by the European Centre for
Medium-Range Weather Forecasts (ECMWF). Furthermore, the application of the GIA
correction on TG time series is considered of great importance when reconstructing the
ASL, since no worldwide TG record can be assumed to be completely unaffected from the
GIA effect [85]. However, since we are interested in studying the local RSL change with
respect to the ASL change, and since we are considering short-lived time series, we can
neglect to apply this correction.

Assessing the rate of sea-level variations is a complicated task exacerbated when time
series are short and possibly affected by multi-annual and decadal oscillations, difficult to
determine on the short term. However, we stick on standard trend assessment by means of
ordinary least squares (using NumPy’s Python library [86]) to ease the comparison with
previous results even though we are conscious that more sophisticated analysis could
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provide different results and that this approach neglects the autocorrelation of the time
series. This weakness is compensated by the characterization of the periodic signals using
two separate approaches, first we compute the Lomb–Scargle periodogram [87,88] (LSP)
for each time series to provide a complete description of the frequency content by using the
Lomb package [89] implemented in R [90]. Then, we apply the Empirical Mode Decomposi-
tion (EMD) method [91,92], a standard method for splitting non-linear and non-stationary
time series into a limited sequence of empirically orthogonal “intrinsic mode functions”
(IMFs) that describe cyclic modes not necessarily characterized by a constant amplitude nor
phase. Differently from traditional spectral methods, the EMD is not requiring assumptions
on the functional expression of the regression model. This allows us to decompose each
time series in sequence of IMFs plus a residual. The latter, normally monotonic, helps to
define how a linear trend is a good model for the non-periodic component of each time
series. The significance of the resulting trends is discerned by means of standard test [93]
that checks the probability of the null hypothesis to be true. This test is reported beside
each trend with its significance code: *** p < 0.001; ** p < 0.01; * p < 0.05; ◦ p < 0.1; ‘ ‘ (blank)
p < 1.

5. Results
5.1. Sea-Level Assessment

Satellite altimetry time series (SAPG, SARA, SARN) are shown in Figure 2a. The visual
comparison among the three SA time series highlights excellent coherence that is confirmed
by the correlation coefficient [94] r = 0.98. To better characterize the frequency content of
these time series we compute the Lomb–Scargle periodogram (LSP; Figure 2b) for each of
them [87,88]. The time series are dominated by the annual and semi-annual oscillation,
both related to the seasonality, with peak-to-peak amplitude varying in the order of 150–300
mm (Figure 2a). The resulting LSPs (Figure 2b) also confirm the coherence between the three
sites and demonstrate the presence of multi-annual oscillation whose most relevant periods
are about 4 and 12 years (see Section 6.1 for detail). LSP significance analysis indicates a
small probability (<10%) for the peak at about 12 years to be artefact even though the large
sample spacing prevents an accurate definition of the period itself. Conversely, the random
peak probability is larger than 10% for the one at about 4 years.

Standard linear regression provides a coherent rate of 2.8 ± 0.5 mm/year over the
timespan January 1993–May 2019 (details in Table 1). These values are smaller but compa-
rable to the global average (in the range of 3.1–3.4 mm/year [95]) over the same timespan.
The rate assessed in our analysis is smaller than what observed for the northern sector of
the Adriatic for the period 1993–2015 (4.25 ± 1.25 mm/year) by Vignudelli et al. [69] even
though the two error bars partly overlap, and consistent with what observed for the period
1993–2018 (3.00 ± 0.53 mm/year) by Mohamed et al. [70]. We in fact observe that when
fitting the same time series with a second-order model (quadratic, Figure 2a), we get a
slight but statistically significant negative acceleration of −0.3 ± 0.1 mm/year2. This local
negative acceleration, in contrast with that at the global scale for which a slight positive
acceleration (0.084 ± 0.025 mm/year2) has been observed [4], is discussed in Section 6.3.

As summarized in Section 3, the three TG time series do not cover the same timespan
and are shorter than SA (Figures 3 and A1). This limits the comparison between different
sites and, for the shorter one, the reliability of the RSL rate assessment. The longest time
series is TGRA (January 1993–December 2015), showing a RSL rate of 5.8 ± 0.8 mm/year
(Table 2). This value is consistent with previous studies e.g., [60,68] and significantly higher
than the ASL rate observed offshore (January 1993–May 2019, Table 1), as a consequence
of the strong vertical land motion expected in this coastal sector. The rate from TGPG
has a large uncertainty that leaves the null hypothesis (absence of trend) likely, while
from TGRN it is largely negative. Despite the large disparity in the resulting RSL rate is
also a consequence of the different time spans, we note that the correlation coefficient,
restricted to the overlapping periods, is 0.80 between Porto Garibaldi and Marina di
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Ravenna, 0.94 between Porto Garibaldi and Rimini, and 0.77 between Rimini and Marina
di Ravenna.
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Table 1. Linear trend rate and acceleration estimated in this work from SA data. Symbol *** indicates
that the model is strongly significant with p < 0.001 and symbol * refers to p < 0.05.

SA
Rate (mm/year)

SA
Acceleration (mm/year2)

Porto Garibaldi
(January 1993–May 2019) 2.8 ± 0.5 *** −0.3 ± 0.1 *

Marina di Ravenna
(January 1993–May 2019) 2.8 ± 0.5 *** −0.3 ± 0.1 *

Rimini
(January 1993–May 2019) 2.9 ± 0.5 *** −0.3 ± 0.1 *



Remote Sens. 2021, 13, 97 9 of 26

Remote Sens. 2021, 18, x FOR PEER REVIEW 9 of 28 
 

Table 1. Linear trend rate and acceleration estimated in this work from SA data. Symbol *** indi-
cates that the model is strongly significant with p < 0.001 and symbol * refers to p < 0.05.  

 SL_cci 
Rate (mm/year) 

SL_cci 
Acceleration (mm/year2) 

Porto Garibaldi 
(January 1993–May 2019) 2.8 ± 0.5 *** −0.3 ± 0.1 * 

Marina di Ravenna 
(January 1993–May 2019) 

2.8 ± 0.5 *** −0.3 ± 0.1 * 

Rimini 
(January 1993–May 2019) 

2.9 ± 0.5 *** −0.3 ± 0.1 * 

As summarized in Section 3, the three TG time series do not cover the same 
timespan and are shorter than SA (Figure 3 and Figure A1). This limits the comparison 
between different sites and, for the shorter one, the reliability of the RSL rate assessment. 
The longest time series is TGRA (January 1993–December 2015), showing a RSL rate of 5.8 
± 0.8 mm/year (Table 2). This value is consistent with previous studies e.g., [60,68] and 
significantly higher than the ASL rate observed offshore (January 1993–May 2019, Table 
1), as a consequence of the strong vertical land motion expected in this coastal sector. 
The rate from TGPG has a large uncertainty that leaves the null hypothesis (absence of 
trend) likely, while from TGRN it is largely negative. Despite the large disparity in the re-
sulting RSL rate is also a consequence of the different time spans, we note that the corre-
lation coefficient, restricted to the overlapping periods, is 0.80 between Porto Garibaldi 
and Marina di Ravenna, 0.94 between Porto Garibaldi and Rimini, and 0.77 between Ri-
mini and Marina di Ravenna. 

 
Figure 3. The three TG time series (IB-corrected) compared with their SA closest grid point data. Associated TGs linear 
and quadratic models are represented by dotted and solid lines, respectively, and their values summarized in Table 2. 
The time series are displayed with random offsets for readability purposes. 

 

 

Figure 3. The three TG time series (IB-corrected) compared with their SA closest grid point data. Associated TGs linear and
quadratic models are represented by dotted and solid lines, respectively, and their values summarized in Table 2. The time
series are displayed with random offsets for readability purposes.

Table 2. Linear trend rate (for raw data and IB-corrected data) for the tide gauges considered in
this work. The significance of the resulting trend varies according to the symbol beside each rate
(significance code: *** p < 0.001; * p < 0.05; ◦ p < 0.1; ‘ ’ p < 1).

TG Rate (mm/year) TG (IB-Corrected) Rate
(mm/year)

Porto Garibaldi (July
2009–December 2019) 1.4 ± 2.8 2.8 ± 2.2

Marina di Ravenna (January
1993–December 2015) 5.8 ± 0.8 *** 5.5 ± 0.8 ***

Rimini (July 2012–September
2020) −7.7 ± 3.6 * −5.1 ± 3.0 ◦

Since one of the goals of this study is the comparison between RSL and ASL to better
understand the different governing mechanisms and observational approaches, we apply
the IB correction to the raw TG data to compare them with SA time series (corrected
for DAC). This correction gives a valid reprocessing of the sea-level variability without
the meteorological effect influence [96]. We can observe that the IB correction leads to a
reduction, in amplitude, for most of the extrema (Figures 3 and A1) and this reflects in
smaller variance for the residual of the OLS regression and, indeed, in a smaller error
associated with the trend (Table 2). As expected, the IB-corrected TG time series result in
different RSL rates and smaller uncertainties. We also note that the quadratic fit for TGRA
returns a positive acceleration (0.7 ± 0.3 mm/year2), not present in the ASL data (Figure 3).

The SA time series have been shortened to match each of the three TG time series
(Figure 3). Also in this case the correlation coefficient is high (0.89) for Porto Garibaldi
e Rimini and moderate for Marina di Ravenna (0.66). We notice that the rates for the
shortened SA time series (Table 3) differ from what observed for the complete time series
(January 1993–May 2019). In particular, in the case of SAPG and SARN, for which we
consider only the last part of the time series, rates turn negative. In details, for SAPG
(timespan July 2009–May 2019) the trend is negative, while the corresponding rate of RSL
is positive (Table 3). This result for SA linear trends is not unexpected since it is consistent
with the observed negative acceleration (Table 1) that suggests a decrease in ASL rate of
about −5 mm/year over the removed 16 years (1993–2009). For the same reason, at SARA
the trend for the period January 1993–December 2015 is larger than the one computed
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for the whole SA timespan, and lower than the RSL rate (Table 3). Finally, for the case of
Rimini, SARN trend is negative (Table 3) but the large error bar demonstrates that the null
hypothesis (no trend) could not be rejected with 0.1 < p < 1. In other words, the large error
bar demonstrates the low significance of the linear model and that the rate could also be
null or even positive. As in the case of altimetry, the analysis of shorter-term time series
also modifies the TG trend values (compare Tables 2 and 3), except for TGRA whose time
series is fully covered by the altimetry and therefore does not need to be cut. Furthermore,
an important contribution to the local sea-level variation at different sites is represented by
the vertical movements (VLM) component included in the TG data. This will be taken into
account and discussed in Section 6.2.

Table 3. Linear trend rate comparison between SA and TG for the common timespan covered.
The significance of the resulting trend varies according to the symbol beside each rate (significance
code: *** p < 0.001; * p < 0.05; ‘ ’ p < 1).

SA
Rate (mm/year)

TG (IB-Corrected)
Rate (mm/year)

Porto Garibaldi
(July 2009–May 2019) −3.1 ± 2.0 1.2 ± 2.3

Marina di Ravenna
(January 1993–December

2015)
3.5 ± 0.6 *** 5.5 ± 0.8 ***

Rimini
(July 2012–May 2019) −3.3 ± 3.2 −7.6 ± 3.7 *

5.2. Periodic Signals

The large uncertainty in estimated rates, and in their variation over different time
spans, suggests analyzing the periodic components of the time series and to define their
relevance in terms of amplitude and frequency to better constrain the characteristics of the
sea-level change. With an approach similar to that used in Section 5.1 for SA, we analyze
the TG time series by means of LSP and EMD.

Results are shown in Figure 4. LSP analysis (Figure 4a) for the whole period range
confirms the prominence of the oscillation at 1 year (especially for longer time series),
while at shorter periods (below 1 year) different peaks emerge between 0.2 and 0.5 years
(i.e., between 2 and 6 months). For the case of Porto Garibaldi and Rimini we notice
that the IB correction enhances the signal for the annual oscillation and that a clear peak
emerges at 0.85 years (10 months). This partly contrasts with what observed for the LSPs
computed for the SA time series in which the semi-annual oscillation emerges more clearly.
The ascending termination of the periodograms at the longest period (right side) for the
case of TGRN and TGRA could reflect the presence of periodic signals at periods longer
than the timespan covered by this (very short) time series. We also notice that IB correction
reduces the power amplitude at longer periods.

To better discern the periodic signals from the long-term trend, we also applied the
EMD analysis to each IB-corrected time series. From Figure 4b, we note that at high
frequency (IMF1–2), large non-sinusoidal oscillations exist, and these show an overall
coherence between the three sites. This suggests a regional scale origin. IMF3, whose
periodic signals range between 1.5 and 3 years, is not coherent during the overlapping
timespan, pointing to a site-related effect. IMF4 exists only for Marina di Ravenna and
Rimini but these time series overlap for a very short timespan and this prevents any
comparison. IMF5 at even longer periods emerges only for Ravenna and it demonstrates
an almost sinusoidal oscillation with a period of about 10.7 years. Residuals confirm what
observed from linear regression (Table 3) and introduce some more complexity: Marina
di Ravenna shows short-lived positive acceleration around year 2000, Porto Garibaldi is
almost linear with two minor inflections, while Rimini shows a parabolic shape contrasting
with a linear model. For Rimini, the shortness of this time series limits the distinction
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between a branch of a parabola or of a sinusoid with period of about twice the length of
the time series.
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6. Discussion

The above data analyses provide a complex picture for the sea-level variation along the
E-R coast. Actually, different data and processing, and the large literature available for the
region suggest several perspectives for discussing and interpreting such complexity. In this
section, we propose a comprehensive interpretation of our results, also in the framework
of previous studies. We focus on factors affecting sea-level variability, on the role of the
VLM in the E-R coast, and on the difficulties of providing a figure for the current or recent
rate of sea level for the area.

6.1. Sea-Level Time Series and Rates for the E-R Coast

To verify the consistency of different instrumental sea-level records at the coastal
scale, TG and satellite altimetry time series were analyzed at three sites along the E-R
coast. Altimetry time series at the three sites turn out to be very consistent, showing
basically the same rate of sea-level rise (Figure 2a; Table 1) and variability in the last
25 years, also denoted by a perfect correlation among them (r = 0.98). On the other hand,
the results provided by the three TGs are more variable in terms of trend and variability
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both among them and with respect to the altimetry. This can be the consequence of some
critical factors. First, the TG time series cover different time spans (Figure 3), and this
can cause discrepancies in the observed rates (Tables 2 and 3). Indeed, the timespan for
which the three TG time series overlap is very short, thus preventing a reliable comparison.
Secondly, rate assessments based on short records are particularly sensitive to oscillations
especially at their extremes, thus they are not suitable for deriving climatological-related
information in the long term [2].

It is a common practice to reproduce the sea-level variation over time by a linear model.
However, this approach sometimes forces the observed phenomenon into a model that is
too simple, neglecting periodic and aperiodic variations of different time scale and size that
can bias the resulting trend. The addition or subtraction of a few samples at the time series
extrema can cause considerable variations of the trend rate as recognizable by comparing
values listed in Tables 1 and 2 with those of Table 3. For the case of the Adriatic Sea, the rate
of sea-level rise strongly varies with time because of the chosen record length [68,85,97,98],
and by the contamination of seasonal and inter-annual variability [99]. To constrain this,
we combined EMD analysis and LSP periodograms. LSP, among the expected annual and
semi-annual oscillations, demonstrates two oscillations at about 4 and about 12 years for
SA data, while the interpretation of TG data is more complex given the short timespan for
TGPG and TGRN. TGRA shows a more complex periodogram in this band, suggesting that
several events contribute to hinder the SA peaks; however, EMD analysis returns a period
signal at about 10.7 years. We can speculate that this oscillation and the SA peak at about
12 years are comparable with the 10 years-oscillation at Mediterranean scale observed by
Bonaduce et al. [100].

The oscillations that influence the Adriatic Sea are mainly due to cycles that act at
annual (stronger energy signal), semi-annual (6 months) and inter-annual (5 years and
higher) scales [101], as also demonstrated in our data (Figures 2a and 4a). The whole
Mediterranean basin is also influenced by oscillations at lower frequencies driven by
natural modes, which produce intermittent anomalies in the long-term rate. As analyzed
by Galassi and Spada [45] the NAO and AMO power are mainly concentrated at a period
of about 8 and 9 years respectively; they also pointed out that the AMO strongest signal is
found at multidecadal periodicities, i.e., between 50 and 70 years. Moreover, one of the
most energetic modes of variability in the Adriatic basin is linked to the periodic occurrence
(approximately 20 years) of opposite phases of the NAO and AMO [45] which produce a
large scale zonal atmospheric gradient [102] and a sea-level non-steric fluctuation directly
linked to mass transport through the Strait of Gibraltar driven by wind [39,103]. The last
occurrence of this phenomenon was determined as the cause of the large positive anomaly
recorded in sea-level signal during 2010–2011 [40,70] by all Mediterranean TG stations [100].
Indeed, the right site upgoing termination of the LSPs (Figures 2b and 4a) could be an
indicator of a longer period oscillation that could not be quantified here because of the
length of the time series.

One further cause of the variability in SL rate and corresponding uncertainties is
the different data processing and different corrections applied. An example of the above
cited complexity is the Marina di Ravenna site for which several previous studies exist,
based on the same TG time series but using different methodologies and adopted correc-
tions, as shown in Figure 5 where the results of some of the most representative studies
conducted on TGRA are summarized (see also Table A1). There is a relation between the
time series length and the error size of the trend resulting from OLS regression, i.e., the error
scales inversely with the number of samples of the analyzed time series [104]. Rate for
longest datasets generally agree, but only when similar data corrections are applied: Zerbini
et al. [73] and Bruni et al. [74] removed from data the non-linear VLM resulting from GNSS
data, while Cerenzia et al. [60] accounted for the linear VLM (from various geodetic data),
and Tsimplis et al. [41] normalized the data with respect to the TG time series of Trieste
(considered to be a tectonic stable site). Rates computed from long time series without
VLM correction are significantly higher [41,60,105] but still relatively grouped. By contrast,



Remote Sens. 2021, 13, 97 13 of 26

rates from short time series (i.e., less than 20 years, see [60,68,105,106]) denote extreme
variability and inconsistency between them regardless of the corrections applied, e.g., IB
correction and deseasoning, whose influence is relatively low here with respect to the
crustal movements corrections. This highlights how the natural variability and the con-
tribution of VLMs strongly influences the RSL signal at the TGs, preventing the estimate
of a univocal sea-level trend valid at the short-, middle-, and long-term scales. Given the
short time spans and the described complexities, we thus cannot establish if and how
the observed trends could be representative of the long-term rate of RSL rise. Also, the
time series analyzed in this work (Figure 3; Table 2) suggest that a not constant rate of
subsidence might play a crucial role in the observed RSL change at this time scale.
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Regarding the comparison between the two different techniques, the analyzed SA
and TG records have been downsized to cover only the overlapping timespan at each
site and this causes differences in the estimated rates at the three sites (Tables 2 and 3).
The results of this comparison are thus expected to improve in the next years/decades
when the available time series will be longer for the analyzed sites. An 18-year- [107] or
15-year-long [108] recording is needed to obtain a good correlation. It has been shown,
in fact, that over intervals shorter than 10 years the inter-annual variability affects more
the rate of global mean sea level from TG than from altimetry [68]. However, despite these
considerations, we obtain very high correlation between SA and TG sea-level time series
at the three studied coastal sites. In particular, the three downsized SA time series show
a strong correlation with the IB-corrected TG time series (Figure 3), especially at Porto
Garibaldi and Rimini (r = 0.98). This confirms the good quality of the chosen SA product
that, as suggested by Vignudelli et al. [69] for the northern Adriatic Sea, is less affected by
degradation at the coast than previous SA data. As a matter of fact, different linear rates
result for TG and SA at each of three study sites (Table 3). Since SA provides a coherent
rate along the E-R coastal area (Table 1), an important contribution to the spatial variability
of RSL at different sites should derive from the VLM component included in the TG data,
and this is the focus of the next section.
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6.2. The Role of Vertical Movements in Sea-Level Determination

In the E-R coastal area (and on a great portion of the Northern Adriatic coast, Italian
side) subsidence is widespread and occurs at high rates [109], while vertical deforma-
tions caused by other phenomena as GIA are more than one order of magnitude smaller
than subsidence that here dominates the VLM affecting RSL change [60,68,69,105,106,109].
Presently, different integrated techniques, such as high-resolution levelling, e.g., GNSS and
InSAR, provide data on VLM with increasing accuracy [57,58]. However, the small size
and short-lived variation of vertical deformation processes causes this information to be
not always comparable/homogeneous. Furthermore, the common practice of co-locating a
GNSS station at the TG site is relatively recent and many TGs do not have associated VLM
data with the necessary precision.

As mentioned in Section 3, TGPG has co-located GNSS station (coded name GARI)
since Jul. 2009. GARI station provides well constrained VLM data well reproduced by a
linear trend with rate equal to −2.8 ± 0.1 mm/year. At Marina di Ravenna, the VLM rate
estimated for the GNSS station located close to TGRA, estimated through the Gipsy software
over the timespan July 1996–December 2015, is −5.6 ± 0.2 mm/year [110]. These VLM
rates, when compared with rates of RSL at each site well explain a relevant portion of the
sea-level change in the considered time frames (Table 2) while the ASL contribution seems
low or negligible. At Rimini, the rate of RSL in the time frame Jul. 2012–Sep. 2020 (the
only one available at TGRN) is negative (−5.1 ± 3.0 mm/year; Table 2), in contrast with
what observed for TGRA and TGPG. Here, a GNSS station (ITRN) operated by the Coastal
Geodetic Network [57] (located at 2.6 km from the tide gauge, at 44◦2’54”N 12◦34’55.4”E)
shows a VLM rate almost null (0.00 ± 0.8 mm/year) for the period 2011–2016 (for further
details see [111] and references therein).

Integrated data on vertical deformations (topographic levelling, GNSS and InSAR) of
selected benchmarks of the E-R Coastal Geodetic Network and data previously acquired in
the framework of the Regional Network for subsidence monitoring [112], provide gradually
decreasing subsidence rates for all the coastal sites under study in the last 25 years [55,57]
(Table 4). These data are gridded at 100 m × 100 m and reproduced as isokinetics of VLM
at the regional scale; associated error is estimated as ±2 mm/year [57]. For the area that
contains the TG data, rates summarized in Table 4 can be considered representative of the
subsidence. Actually, these data agree with the rate observed by GNSS at Porto Garibaldi
and Marina di Ravenna. For Rimini, subsidence data suggest that this phenomenon is
gradually decreasing but not inverted, as the negative rate of RSL rise might suggest.

Table 4. Ranges for the rate of subsidence estimated over different time frames for each of the study
sites from selected benchmarks of the E-R Coastal Geodetic Network [111].

1992–2000
(mm/year)

2002–2006
(mm/year)

2006–2011
(mm/year)

2011–2016
(mm/year)

Porto Garibaldi 7.5–10 7.5–10 2.5–5 2.5–5

Marina di
Ravenna 7.5–10 7.5–10 5–7.5 2.5–5

Rimini 5–7.5 5–7.5 5–7.5 0–2.5

As a parallel approach, we use the SLE (Equation (1)) to compare the observed sea
level or ground variation with the one obtained by the combination of the over two data.
It must be pointed out, however, that the accuracy of this method is frequently larger
than 1 mm/year whatever its application [113–115]. Despite the coarseness of this method
(20 years of data should be required to yield a high-precision estimate, [115]) several
authors have applied it to regional studies, since understanding VLM for sea-level research
is of farthest significance e.g., [21,116–124].

For the case of Porto Garibaldi, the three variables that form Equation (1) are available
from the different observables considered for this work over the common period July
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2009–May 2019. This allows us to evaluate the different estimates obtained through the
two approaches, i.e., by comparing the rate obtained from the linear regression of the direct
observation (Table 3) with those computed by using Equation (1) (hereafter computed).
Visual inspection of Figure 6 suggests a strong correlation between the pairs (SA, U+S)
and (TG, N-U), this confirmed by r = 0.90. By contrast, the correlation between (N-S)
and the GNSS is low (r = 0.37). This follows the different accuracy of GNSS data (below
0.1 mm/year) with respect to TG data contained in N-S. The trend values related to the
computed time series (Table 5) slightly differ from those of the observed one (Table 3).
We note that only for U the null hypothesis (no trend) could be rejected. Figure 7 shows
that the observed and computed trends match within their error bars, despite the differ-
ences between their central values, suggesting a good coherence between the different
observations. In particular, the trend observed for N (from U+S) is lower in value than
the ASL derived from SAPG (−3.1 ± 2.0 mm/year) even though their error bars overlap
(Figure 7). The trend for S is almost null and its error bar shows good overlap with the
rate of RSL given from TGPG (1.2 ± 2.3 mm/year; Figure 3, Figure 6, and Figure 7). U is
affected by larger uncertainties with respect to the GNSS time series, with uncertainties
lower in value (−2.9 ± 0.1 mm/year in the time frame Jul. 2009–May 2019) and completely
contained in the U error bar (Figure 7).
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Table 5. U, N and S resulting from the SLE (Equation (1)) where N is the ASL variation, U is vertical
displacement and S is the RSL variation (values in mm/year). NA = not available. The significance of
the resulting trend varies according to the symbol beside each rate (significance code: *** p < 0.001).

U N S

Porto Garibaldi
(July 2009–May 2019) −4.3 ± 3.1 *** −1.7 ± 2.3 −0.2 ± 2.1

Marina di Ravenna
(January

1993–December 2015)
−2 ± 1 NA NA

Rimini
(July 2012–May 2019) 4.3 ± 4.9 NA NA
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Figure 7. The comparison of linear trend estimates from observed data (black) and those computed
(green) at Porto Garibaldi. Dots represent the central values with their standard deviation depicted
by the line. Grey areas show the common interval between the different datasets trend values. It can
be noted that the values of the observed and computed trends match within their error bars.

For the case of Marina di Ravenna and Rimini, only S and N can be directly determined,
since GNSS instruments are not co-located at these TGs. Then, Equation (1) can be applied
to indirectly estimate U. Figure 8 shows the time series (SA-TG) for Marina di Ravenna
and Rimini (with their related errors) whose rate (Table 5), according to Equation (1),
should represent (U = N − S). These values are quite unexpected since subsidence at
Marina di Ravenna is known to be larger (see Table 4); at Rimini this contrasts with the
observed subsidence (Table 4). However, if U for Marina di Ravenna is computed on
the reduced timespan for which GNSS data exist (July 1996–December 2015) the rate
of VLM is −4.7 ± 0.6 mm/year, smaller than that provided by the GNSS located near
TGRA (−5.6 ± 0.2 mm/year). The two results do not match within their error bar for only
0.1 mm/year. As mentioned above, this GNSS is in the vicinity of TGRA and, the larger
the distance between GNSS and TG, the smaller the representativeness of the real VLM
at the TG. It has been observed that, when large heterogeneities exist, a few hundred
meters of distance between TG and GNSS stations can cause decoupled movements [18].
This seems to be the case for the Marina di Ravenna harbor where Cerenzia et al. [60] found
different rates of subsidence at very short distances, likely due to the weight effect of the
structures themselves (e.g., the embankment with respect to the dock and the lighthouse).
Fenoglio-Marc et al. [68] reports similar results for the Marina di Ravenna site, where GNSS
observations provide a higher VLM rate with respect to the one computed from SA and
TG difference, attributing it to anthropogenic causes, to the distance between the TG and
the closest SA grid point and to the corrections applied on the RSL time series.

At Rimini, the context appears completely different with respect to Marina di Ravenna
and Porto Garibaldi. Despite the high correlation between TGRN with SARN, at Rimini
the RSL shows a negative trend (Figure 3), although the small timespan covered by TGRN
time series gives at this data very low statistical significance (Tables 2 and 3). The time
series (SA-TG) shows a positive trend for U (Table 5) indicating a “proxy-derived” local
effect of land uplift (Figure 8), in contrast with the VLM rates (0.00 ± 0.8 for the timespan
2011–2016) provided by the ITRN station. GNSS values agree with recent subsidence
monitoring activities using InSAR (Table 4). The error associated with InSAR measure is
2 mm/year, suggesting that for the period 2011–2016, some portion of the Rimini area that
includes the GNSS and TG stations may undergo opposite VLMs (uplift) with respect to
other sectors of the E-R coastal belt. At Rimini, the GNSS station is located 2.6 km apart
from the TG and this makes the data comparison even less effective than for the case of
Marina di Ravenna [18]. Measured subsidence at Rimini has markedly decreased in the
last two decades [57] and it cannot be excluded that VLM could reverse in the next decades;
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unfortunately, to date there is not enough data to support this hypothesis and more years
of data acquisition are required.

Remote Sens. 2021, 18, x FOR PEER REVIEW 18 of 28 
 

tive than for the case of Marina di Ravenna [18]. Measured subsidence at Rimini has 
markedly decreased in the last two decades [57] and it cannot be excluded that VLM 
could reverse in the next decades; unfortunately, to date there is not enough data to 
support this hypothesis and more years of data acquisition are required. 

 
Figure 8. Time series of the N − S = U term at Marina di Ravenna (red) and Rimini (blue) computed by using Equation 
(1). Gray area represents data error range. The time series are shifted in the vertical scale for presentation purposes. 

6.3. The Sea-Level Trend Acceleration Issue 
As anticipated in the introduction, at global scale the sea level has been rising at a 

rate of 3.3 ± 0.5 mm/year [3], with a positive acceleration of 0.084 ± 0.025 mm/year2 [4] 
over the altimetric era (1993–present). Global maps show that the sea-level rise is not 
spatially uniform, with a diffused pattern of null rate and even showing a sea-level fall, 
see [125]. Then, it is not surprising that this heterogeneity also reflects in different local 
sea-level acceleration as for the case of the small spot target of this study in which we 
observe, for the same period, a negative acceleration of –0.3 mm/year2. Acceleration 
could be the consequence of global short-lived phenomena, as for the case of the 
Pinatubo eruption in 1991 [126] or of climatological events. Moreover, given the length 
of the SA time series, accelerations could be also a consequence of the contribution of 
multidecadal oscillations for which only a portion of it is sampled. Because of this con-
sideration, the observation of a full cycle (at least) is required to properly model the os-
cillation itself, determine its origin, and its plausible relation with climate change. Unfor-
tunately, since the satellite altimeter era only started in 1993, and long-term TG observa-
tions are contaminated by an unknown non-linear VLM (measured only since co-located 
GNSS acquisition started, i.e., in the late 1990s), it is currently complicate to properly at-
tribute to the ongoing observed regional sea-level variations to climatological origin. In 
our case, we observe a localized negative acceleration for the E-R coast, whose interpre-
tation should be put in the broader context of the Mediterranean Sea in which a marked 
spatial variability of sea-level trend is observed, for instance, by Bonaduce et al. [100]. 
The ASL negative acceleration observed at the E-R coast in recent decades (Figure 2a; 
Table 1) has been previously noted by other authors. After a positive acceleration of sea-
level rise observed in the Mediterranean Sea during the 1990s [127] since the early 2000s, 
in fact, the sea level stopped rising [128–130]; this seems to match well with the quadrat-
ic fit shown for SA in Figure 2a. As previously explained in Section 6.1, ocean–
atmosphere oscillations are responsible for inter-annual and interdecadal cyclic sea-level 
variations in the Mediterranean; the main engine of these phenomena has been associat-
ed, at a global scale, with natural modes (e.g., the NAO and the AMO) inducing tempo-
rary reductions or magnification of sea-level trend amplitude at the basin to regional 
scale [103]. Besides this inter-annual variability, changes in sea-level acceleration on 
multidecadal time scales have been documented by several authors for the whole 20th 
century which is generally characterized by a greater rate in the first half, followed by an 
overall negative acceleration [43,131–133]; however, the processes causing this variabil-
ity, and their link to climate change, are not completely understood yet. 

Figure 8. Time series of the N − S = U term at Marina di Ravenna (red) and Rimini (blue) computed by using Equation (1).
Gray area represents data error range. The time series are shifted in the vertical scale for presentation purposes.

6.3. The Sea-Level Trend Acceleration Issue

As anticipated in the introduction, at global scale the sea level has been rising at a rate
of 3.3 ± 0.5 mm/year [3], with a positive acceleration of 0.084 ± 0.025 mm/year2 [4] over
the altimetric era (1993–present). Global maps show that the sea-level rise is not spatially
uniform, with a diffused pattern of null rate and even showing a sea-level fall, see [125].
Then, it is not surprising that this heterogeneity also reflects in different local sea-level
acceleration as for the case of the small spot target of this study in which we observe,
for the same period, a negative acceleration of –0.3 mm/year2. Acceleration could be the
consequence of global short-lived phenomena, as for the case of the Pinatubo eruption in
1991 [126] or of climatological events. Moreover, given the length of the SA time series,
accelerations could be also a consequence of the contribution of multidecadal oscillations
for which only a portion of it is sampled. Because of this consideration, the observation
of a full cycle (at least) is required to properly model the oscillation itself, determine its
origin, and its plausible relation with climate change. Unfortunately, since the satellite
altimeter era only started in 1993, and long-term TG observations are contaminated by
an unknown non-linear VLM (measured only since co-located GNSS acquisition started,
i.e., in the late 1990s), it is currently complicate to properly attribute to the ongoing observed
regional sea-level variations to climatological origin. In our case, we observe a localized
negative acceleration for the E-R coast, whose interpretation should be put in the broader
context of the Mediterranean Sea in which a marked spatial variability of sea-level trend is
observed, for instance, by Bonaduce et al. [100]. The ASL negative acceleration observed
at the E-R coast in recent decades (Figure 2a; Table 1) has been previously noted by other
authors. After a positive acceleration of sea-level rise observed in the Mediterranean Sea
during the 1990s [127] since the early 2000s, in fact, the sea level stopped rising [128–130];
this seems to match well with the quadratic fit shown for SA in Figure 2a. As previously
explained in Section 6.1, ocean–atmosphere oscillations are responsible for inter-annual
and interdecadal cyclic sea-level variations in the Mediterranean; the main engine of these
phenomena has been associated, at a global scale, with natural modes (e.g., the NAO and
the AMO) inducing temporary reductions or magnification of sea-level trend amplitude at
the basin to regional scale [103]. Besides this inter-annual variability, changes in sea-level
acceleration on multidecadal time scales have been documented by several authors for
the whole 20th century which is generally characterized by a greater rate in the first half,
followed by an overall negative acceleration [43,131–133]; however, the processes causing
this variability, and their link to climate change, are not completely understood yet.

We showed in Section 5.1 that the SA time series, shortened for matching with the TG
time series (Figure 3), provide rates differing from what observed for the complete SA time
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series (January 1993–May 2019, Figure 2a). In particular, in the case of SAPG and SARN,
rates turn negative (Table 3; although for Rimini the hypothesis of no trend could not be
rejected), consistently with the observed negative acceleration (Table 1). For the Marina
di Ravenna site, the overlapping timespan (1993–2015) is long enough to obtain, from the
quadratic regression, a significant acceleration in the time series (Figure 3). Namely we
get 0.7 ± 0.3 mm/year2 for TGRA and −0.2 ± 0.2 mm/year2 for SARA. The opposite signs
suggest that two different phenomena govern the two accelerations and a good candidate
could be VLM that, as mentioned above, is governed here by subsidence. From Equation
(1), the VLM acceleration is the difference between those of the two terms mentioned above,
and it results equal to −0.9 ± 0.4 mm/year2. Actually, subsidence is slowing down in the
region and locally in the surrounding of TGRA as resulting from Table 1, and this should
reflect in a positive acceleration in the ongoing negative VLM. We can then argue that what
we are observing at TGRA is something different from the effects of the local subsidence or,
more likely, other phenomena are governing the acceleration at TGRA.

At the regional scale, the decrease of subsidence measured by the E-R Coastal Geodetic
Network over recent decades (see Table 4) is a favorable indication in terms of reducing
future flooding vulnerability for this area. However, as already pointed out by Cerenzia
et al. [60] and Fenoglio-Marc et al. [68], and discussed at Section 6.2, different rates of
VLM are available, depending on the precise site of measurement and not necessarily
representative of the VLM at the TG location. We thus remark the need for local and
repeated VLM measurements at the TG site to correctly interpret RSL series and for
detecting possible ASL positive or negative accelerations.

7. Conclusions

In this paper, we have studied the sea-level variation along the E-R coast by focusing
on monthly sea-level observations from the three available TGs located at Porto Garibaldi,
Marina di Ravenna, and Rimini. Data are compared with CMEMS SA data from the three
grid points closer to each of the TGs; The combined use of altimetry and tide gauge data
(supplemented by GNSS acquisition) is considered, in fact, a promising approach, in terms of
precision and cost-effective implementation, to better define various physical processes in the
coastal domains and to anticipate the impacts of future rise in sea levels [10,11,22,69,134–137].

Our results show that the ASL time series (from SA) are coherent along the coastal
tract, providing a rate of 2.8 ± 0.5 mm/year for the timespan Jan 1993–May 2019, smaller
but comparable to the global average (3.3 ± 0.5 mm/year). Moreover, we note in the
E-R coast a negative acceleration of −0.3 ± 0,1 mm/year2 that contrasts with the positive
global acceleration. The comparison with the IB-corrected TG time series suffers from
the short overlapping period between the two different datasets (Jul. 2009–May 2019 at
Porto Garibaldi; Jan 1993–Dec 2015 at Marina di Ravenna; Jul. 2012–May 2019 at Rimini).
Despite their shortness, the SA and TG time series show high correlation coefficient (0.89)
at Porto Garibaldi and Rimini, and a moderate one (0.66) at Marina di Ravenna. The lower
correspondence achieved at Marina di Ravenna, as well as the difference between ASL
and RSL rates for this site (Table 3), are mostly associated with the local rate of VLM.
Actually, VLM can hamper the detection of signals associated with sea-level change and
related spatial variations [22]. For all the three analyzed sites, this remains an important
contribution to quantify. It is remarked the need for co-located monitoring of the ground
motions at the TG sites, since the determination of VLM is a key element in understanding
how sea level has changed over the past century and how future sea levels may impact
coastal areas [22].

Finally, as already observed for other coastal areas [11,13,69], the good match between
altimetry and in situ observation confirms that high-standard satellite product can provide
consistent data even at short distance from the coast. Linking satellite altimetry measure-
ments with tide gauge, by bridging the open-ocean measurements with those in proximity
of the coast [12] is part of a new challenge in monitoring sea-level rise along coastal tracts.
In this view, the maintenance and implementation of observation stations for continuous
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monitoring of sea level in the coastal zone is a fundamental tool for coastal management
and defense strategies.
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AMO Atlantic Multidecadal Oscillation
ARPAE Regional Agency for Prevention, Environment, and Energy of the

Emilia-Romagna region
ASL Absolute Sea Level
CMEMS Copernicus Marine Environment Service
DAC Dynamic Atmospheric Corrections
DInSAR Differential Synthetic-Aperture Radar Interferometry
DUACS Data Unification and Altimeter Combinations System
E-R Emilia-Romagna
EAC Eastern Adriatic Current
ECMWF European Centre for Medium-Range Weather Forecasts
ECV Essential Climate Variable
EMD Empirical Mode Decomposition
ENSO El Niño Southern Oscillation
ERF Effective Radiative Forcing
GARI Permanent GNSS station co-located at Porto Garibaldi tide gauge
GCOS Global Climate Observing System
GIA Glacial Isostatic Adjustment
GNSS Global Navigation Satellite System
HF High Frequencies response of sea level to wind and pressure forcing effects
Hs Significant wave Height
IB Inverse Barometer effect
IGS International GPS Service
IMF Intrinsic Mode Function
InSAR Interferometric Synthetic-Aperture Radar
INGV Istituto Nazionale di Geofisica e Vulcanologia
IOC Intergovernmental Oceanographic Commission of UNESCO
IPCC Intergovernmental Panel on Climate Change
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GCOS Global Climate Observing System
LSP Lomb–Scargle Periodogram
NAO North Atlantic Oscillation
NGL Nevada Geodetic Laboratory
OLS Ordinary Least Square regression
PSMSL Permanent Service for Mean Sea Level
RLR Revised Local Reference
RMN Italian National Tide Gauge Network
RSL Relative Sea Level
SA Satellite Altimetry
SAPG Closest altimetry pixel to Porto Garibaldi tide gauge
SARA Closest altimetry pixel to Marina di Ravenna tide gauge
SARN Closest altimetry pixel to Rimini tide gauge
SLE Sea-Level Equation
SSH Sea Surface Height
TG Tide Gauge
TGPG Tide Gauge at Porto Corsini
TGRA Tide Gauge at Marina di Ravenna
TGRN Tide Gauge at Rimini
UNFCCC United Nations Framework Convention on Climate Change
VLM Vertical Land Movement
WAC Western Adriatic Current
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Figure A1. Raw TG time series. Dotted lines represent estimated linear models resulting from OLS regression. The offsets
between the time series are arbitrary for better readability.
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Table A1. Linear sea-level trend estimates (and related corrections applied) from some of the most
representative studies conducted on the Marina di Ravenna TG time series. Time frames considered
by various authors are indicated in brackets.

Rate (mm/year) Type of Data Considered

Antonioli et al., 2017 8.3 ± 0.3 monthly mean (2000–2013)

Bruni et al., 2019 1.25 ± 0.16 monthly mean (1873–2016), detrended for
non-linear VLM

Cerenzia et al., 2016

8.5 ± 0.2 annual mean (1897–2014)

7.7 ± 0.3 monthly mean (1970–2013)

9.8 ± 1.3 annual mean (1990–2013)

(2.2 ± 1.3) (detrended for linear VLM)

Fenoglio-Marc et al.,
2012 6.5 ± 1.5 monthly mean (1993–2008), IB correction,

deseasoning

Masina and Lamberti,
2013

8.6 ± 0.5 annual mean (1896–2011)

3.1 ± 0.7 annual mean (1896–1950)

10.3 ± 8.0 annual mean (2000–2011)

Tsimplis et al., 2012

3.1 ± 1.3 annual mean (1897–1921)

1.5 ± 1.3 annual mean (1905–1921), normalized for Trieste

8.4 ± 1.1 annual mean (1937–1972)

(7.1 ± 0.8) (normalized for Trieste)

3.9 ± 0.6 daily mean

Zerbini et al., 2017

1.22 ± 0.32 annual mean (1896–2012), IB correction,
detrended for non-linear VLM

1.05 ± 0.54 annual mean (1934–2012), IB correction,
detrended for non-linear VLM
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Evidence and Implications of Hydrological and Climatic
Change in the Reno and Lamone River Basins and Related
Coastal Areas (Emilia-Romagna, Northern Italy) over the
Last Century
Matteo Meli * and Claudia Romagnoli

Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
* Correspondence: matteo.meli7@unibo.it

Abstract: Climate change and human activities have consequences on coastal areas as they affect
hydrological processes in the related river basins. The riverine sediment supply to the beaches of
the Emilia-Romagna coast, a highly urbanized area with high economic and naturalistic value, has
been heavily impacted by human activities throughout the catchment, reducing solid transport to the
coast and increasing the threat of coastal erosion and flooding. Despite the introduction of safeguard
policies in the early 1980s and the consequent stoppage of such activities, the expected return in
solid transport has not yet been reflected at the coast. To better understand the various processes
acting at the river basin scale, we utilized empirical mode decomposition to analyze the variability in
different parameters (river discharge, rainfall, air temperature, and sea level) from the headwaters to
the coast of the Reno and Lamone rivers over the last century. The anthropogenic footprint, linked
to the large-scale dimming/brightening phenomenon, is visible in the long-term trends. Moreover,
natural signals with variable periodicity are evident and partially correlated with two major climate
modes (North Atlantic Oscillation and Atlantic Multidecadal Oscillation). The coupled interactions
among these processes, combined with the changes in land use and evapotranspiration during the
last century, have resulted in the prolonged scarcity of river sediment supply and a long-term trend
of erosion of the coastal area.

Keywords: climate change; human impact; riverine sediment supply; sea level rise; land-use change

1. Introduction

Riverine sediment discharge, the foremost feeding source for low-elevation coastal
zones (LECZ) [1,2], has declined drastically worldwide over the last century (e.g., [3–8])
and will likely continue to decline [9,10]. The amount and role of sediment supplies at
the coast varies with the local climate, geological setting, and degree of human impact
within each catchment area [11–13]. LECZs worldwide have reached a critical tipping
point, shifting from a natural pseudo-stable state since the Holocene to a state controlled
by human dynamics [14] owing to land use modifications throughout their catchment
areas [15,16]. Furthermore, rising sea levels and other climate-driven effects are expected
to exacerbate such impacts on LECZs [17]. Despite climate-driven modifications remaining
influential, they may locally be of secondary importance [18] since human effects may
more heavily interact with hydrological processes. Anthropogenic modifications over
catchment areas, together with the hydrological and climatic changes, and their related
connection with atmospheric dynamics, should be thus taken into account in order to better
understand which processes are most likely to drive the evolution of coastal areas.

The Emilia-Romagna (ER) coast is a 130 km long LECZ south of the Po River Delta,
Northern Italy, facing the northern Adriatic Sea (Figure 1a), which has undergone severe
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anthropization since the 1950s [19]. Increased subsidence due to underground fluid exploita-
tion [20–23], land reclamation, and the widespread use of coastal defense structures [24–26]
have affected the ER coastal plain, making it sensitive to floods [27]. Furthermore, the heavy,
anthropogenically driven reduction in sediment delivery by rivers (mainly due to sediment
digging and river regulation), mostly between the 1940s and 1980s, has led to generalized
erosion and shoreline retreat [28–30]. Although safeguard policies for riverbed excavation,
introduced by the ER regional government during the early 1980s, were expected to gradu-
ally reverse this, only the amount of suspended material has slowly increased, whereas
fluvial bedload has decreased [31,32]. Granulometric analysis on samples collected since
the 1970s in the submerged beach of the ER coast, at or below 3 m depth, has shown a
generalized overall decrease in grain size until the present day [33–36]. Indeed, a recovery
in bedload sediment supply has not yet occurred since the introduction of the safeguard
policies; thus, most of the ER shoreline has become threatened by erosion and flooding [34].
Previous analyses have been conducted over the regional scale in order to better elucidate
the hydrological, environmental, and climatic evolution of the area, finding a significant
decrease in river discharge [37] and indicating that sediments are currently not being
transferred downstream as they were previously. While a clear increase in air temperature
has also been observed for the last 70 years (e.g., [38]), trends in rainfall have been found
to be statistically significant only at certain locations [39–41], highlighting a great spatial
variability for this parameter. This effect has primarily been linked to the frequencies of
diverse weather regimes which, locally, have led to differentiation in both total annual
rainfall amount and its variability through time [42]. Generally speaking, significant/non-
significant decreases in rainfall are a matter of debate on both the Italian [43–46] and
Mediterranean scales [47,48], for which the contrast has been mainly attributed to the
length of the time interval considered in the analysis [45].

In this study, the Reno and Lamone river basins (Figure 1a), which feed an approxi-
mately 20 km stretch of the ER coast between the Porto Garibaldi and Porto Corsini harbors
(Figure 1b), have been considered. The Reno River, with a length of 210 km and a basin area
of approximately 4630 km2, is the main river of the ER region after the Po River, and the
sixth nationwide in terms of basin size. It drains both mountains and plains and is joined
by many tributaries from the Apennines and artificial channels in the plains (Figure 1c).
The basin of the Lamone River (approximately 520 km2, Figure 1a) is much smaller than the
Reno River basin; nevertheless, its sediment supply also provides an input for the coastal
budget of this area. Coastal prograding at the mouth of the Reno River during the early
20th century was previously associated with a sustained sediment supply [33], whereas
from the late 1930s onward, progressive erosion has occurred [34]. The coastal areas of
these river basins and adjacent wetlands (the Comacchio Valleys and the Bellocchio marsh;
Figure 1b), represent a significant economic and naturalistic resource (Ramsar Convention
site); however, these areas are among the most threatened by shoreline retreat and flooding
along the Mediterranean and European coasts [49]. Furthermore, these coasts are signifi-
cantly impacted by economic activities that cause land subsidence, such as gas exploitation
by ENI (Ente Nazionale Idrocarburi) in the “Dosso degli Angeli” reservoir (Figure 1b) [50].

In this paper, the linear and nonlinear evolution of environmental-climatic parameters
for both river basins have been analyzed by considering river discharge, rainfall, and air
temperature datasets, representative of the river basins over the last century. The main
goal of the study is to better understand the implications of the hydrological and climatic
variations occurring over the river basins and at the coast. According to Preciso et al. [37],
the Reno River catchment no longer represents the primary sediment source for the coast,
primarily because of reforestation within the catchment since the 1950s. Moreover, in several
Mediterranean locations, changes in land use, together with increased evapotranspiration
and soil erosion control measures, have reduced runoff, and thus, sediment supply [51–54].
Due to this, land use changes and evapotranspiration datasets were also taken into account
in our analyses in order to obtain a more holistic view of the changes occurring throughout
the catchment areas. Moreover, the local sea level, here affected by both natural and



Water 2022, 14, 2650 3 of 25

anthropogenic components (see [55,56] for details), was considered, as it is a critical factor
in coastal evolution.
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In detail, this study addresses the following questions: (1) How have anthropogenic
and natural signals acted on hydrological processes at the river-basin scale, from the
headwater to the coast, over the last century? (2) Why, despite safeguards for river basin
management, has the solid river supply to coastal sites not yet recovered? (3) How have cli-
mate change and anthropogenic footprints affected sea-level changes in the studied LECZ?

2. Materials and Methods
2.1. Data

The average monthly river discharge, rainfall, and air temperature data were ob-
tained from the Dext3r-SIMC platform [57] and the annals of the National Hydrological
Service [58]. Only long-term data within both the river basins were obtained, in order
to consider a wider, historical view of the surface processes. Furthermore, liquid trans-
port time series were reconstructed from three selected river gauges (Figure 1c); however,
these datasets contained gaps (Figure 2). To rebuild a representative time series, thereby
increasing the signal-to-noise ratio, data from the twelve longest and more complete indi-
vidual rain gauges (out of a total of 92 stations available throughout the two basins) were
considered and stacked. Although these datasets were affected by a common gap in the
year 1924, minor gaps in each time series were filled using records from the closest station
(excluded from the analysis) within 10 km after careful comparison of the overlapping data.
To further examine rainfall variability, the number of wet days (≥1 mm/day) were also
considered. The minimum and maximum temperatures were used to produce a monthly
climatological assessment of the river basins. Additionally, a stacked curve was computed
to achieve a basin-representative climate time series that considered data from nine stations
(Figure 1c).
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Figure 2. Duration of the considered records.

The relative sea level data (RSL, which measures the sea level with respect to a
benchmark on land) were obtained from the Marina di Ravenna tide gauge (RTG; Figure 1b),
which is currently managed by ISPRA (Istituto Superiore per la Protezione e la Ricerca
Ambientale). The gauge has recorded data since 1873, with a gap from 1922 to 1933 and
discontinuities since 2016 (Figure 2); hence, data after 2015 were discarded. The RTG
time series was assembled using data from various sources (1873–1979 and 2001–2016
from the Permanent Service for Mean Sea Level (PSMSL) data bank [59,60]; 1971–2001
from Romagnoli et al. [61], and homogenized considering data overlaps and following
Bruni et al. [56]).
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River discharge, rainfall, temperature, and RTG time series were compared with three
climate indices, namely the North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscil-
lation (AMO), and Western Mediterranean Oscillation (WeMO). The NAO is among the
most significant modes of climate variability in the Northern Hemisphere, with season-
ally fluctuating manifestations, especially during the boreal winter [62,63]. The winter
(December–March) station-based NAO dataset was used; this represents the normalized
sea-level pressure between Lisbon (Portugal) and Stykkishólmur (Iceland) since 1864,
by the National Centers for Environmental Prediction/National Center for Atmospheric
Research [64], based on Hurrell et al. [63]. The AMO [65] is another prominent climate
variability mode in the Northern Hemisphere, defined by variability in sea surface tem-
perature (SST) in the North Atlantic Ocean and characterized by a dominant periodicity
of approximately 60–70 years. The AMO is the area-weighted average SST (between 0◦

and 70◦ N) with the linear trend removed. The annual AMO index, available since 1856,
was provided by the National Oceanic and Atmospheric Administration/Physical Sciences
Division [66]. The WeMO index [67] is defined as a dipole structure formed (in its positive
phase) by an anticyclone over the Azores and a depression over north-western Italy; its
index is the result of the difference between the standardized values of surface atmospheric
pressure in San Fernando (Spain) and Padua (Italy). In this study, we also accounted for
the WeMO since it is considered by some authors more significant than the NAO to explain
rainfall anomalies over the north-western Mediterranean (e.g., [68] and references within).

The Standardized Precipitation Evapotranspiration Index (SPEI) [69] was used for
long-term drought analysis (1921–2019). The SPEI allows for the identification of drought
severity using its length and intensity at various timescales, considering the effects of both
temperature and precipitation. This index combines the strength of the multi-temporal
Standardized Precipitation Index [70] and the sensitivity of the Palmer Drought Sever-
ity Index [71]. The Global SPEI database [72] used in this study covers the globe at a
spatial resolution of 0.5 degrees and offers timescales from 1 to 48 months. The poten-
tial evapotranspiration in the SPEI database is based on the FAO-56 Penman-Monteith
method [73]. Despite its coarser spatial resolution with respect to local datasets, the SPEI
has been adopted as it has been thoroughly validated by several authors (e.g., [74–81])
to reveal moisture anomalies for environmental and agricultural applications. Since our
study primarily considers the long-term (decadal to centennial) alternation of drought and
wet conditions rather than short-term (monthly) events, the 48 month-average time series
have been used. The Bologna grid cell was considered as representative of the Lamone
and Reno river basins because the variability between adjacent cells at this spatial scale
was negligible.

Snow cover percentage over the period 1950–2022 was obtained from the ERA5-Land
reanalysis dataset [82–84] and limited to the area under analysis. This parameter represents
the fraction (0–100%) of the grid cell occupied by snow and is provided with a spatial
resolution of 0.1 × 0.1 degrees.

Land use was evaluated using land use maps for 1976, 1994, 2003, 2008, 2014, and
2017, produced by the GIS and Statistic Service of the ER Region [85]. These maps were
developed utilizing aerial photography and are characterized by their minimal detectable
area: 0.375 (1976), 1.56 (1994 and 2003), and 0.16 (2008, 2014, and 2017) hectares. The land
use for these products was mapped using the Corine Land Cover legend until level three.

2.2. Methods

All datasets in this study were homogenized into monthly means. The time series
were plotted using a 1-year moving average low-pass filter to highlight the interannual
variability. Modified non-parametric Mann-Kendall (MK) tests [86–88] were performed to
assess temporal trends (statistically significant at the 95% confidence interval). MK analysis
was implemented using the Theil-Sen estimator [89,90] to evaluate linear trends. This
method is insensitive to outliers and more accurate than simple linear regression [91]. To
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account for serial autocorrelation and properly estimate trend-related errors, the procedure
described in Zervas [92] has been followed.

Considering the stacked rainfall time series and the monthly sum of wet days, the
Simple Daily Intensity Index (SDII), which is the ratio of total rainfall to the number of wet
days, was computed based on Frich et al. [93]. Only the SDII values above the 95th and
99th percentiles were considered.

For RSL analysis, several authors have addressed the removal or assessment of vertical
crustal movements (VLM) from tide gauge data [55,94–97]. Optimally, VLM contributions
can be distinguished by Global Navigation Satellite System monitoring of tide gauge
data [98]; however, this began in the late 1990s [99,100]. To remove the VLM components,
the RTG time series was subtracted from the Trieste Tide Gauge (TTG; location in Figure 1a)
dataset (data 1875–2021 from the PSMSL archive); from this, a locally weighted polynomial
regression was created and subsequently removed from the original RTG datasets. This
procedure relies on the assumption that TTG location is considered a relatively stable area
in terms of vertical land movements, with a weak uplift in the range of a few tenths of
mm·year−1 or negligible (e.g., [101–106]).

To assess nonlinear and non-stationary signals, empirical mode decomposition (EMD) [107]
was applied to decompose monthly mean river discharge, rainfall, air temperature, and sea
level into finite empirical orthogonal intrinsic mode functions (IMFs). Each IMF describes
cyclic variations, though not necessarily constant phases and amplitudes, representative of
the oscillating mode from the highest to the lowest frequency. The lasting, non-oscillatory
mode is the residual (RES), usually associated with the long-term trend of the signal, which
is typically monotonic and provides information about the reliability of the linear model
for nonperiodic components. Previous studies have employed EMD to correlate nonlinear
variations among different phenomena [108–114]; moreover, it is well suited for analyzing
non-stationary time series.

The non-parametric Kendall rank correlation was employed to examine statistical rela-
tionships for NAO, AMO, and WeMO with our time series. This method has significantly
smaller gross error sensitivity and asymptotic variance than Spearman rho or Pearson r
and provides significantly more accurate p-values [115]. To evaluate autocorrelation, the
time series were linearly detrended, and their effective sample size, based on the lag-1
autocorrelation coefficient, was considered [116,117]. The statistical significance of the
correlation results was set at 95% CI.

Periodic signals were characterized by computing Lomb-Scargle periodograms [118,119]
for each time series and both the NAO and AMO indices, providing a description of the over-
all frequencies. The periodograms were confined to the standard normalized power interval
0–1, according to Baluev [120], and limited to >4 years to focus on low-frequency signals.

In the land use analysis, only polygons within the Reno and Lamone river basins were
considered. A further subdivision was made between the polygons within the alluvial
plain and Apennine portions of the maps to highlight the various changes between the
two sectors.

3. Results
3.1. Long-Term Linear Analysis

MK tests on all three river gauge stations indicated a statistically significant decrease
in river liquid discharge (Figures 3a and A1) over the last century. The Casalecchio di Reno
time series, which is the most complete, showed a decrease of −0.18 ± 0.08 m3/s·year−1

during 1921–2021 (Figure 3a). This station was more reliable than that at Ponte Bastia
(Figure 1c) since, although the latter could depict the behavior of the lower Reno River
basin, it was affected by massive anthropogenic contamination, mainly due to the Cavo
Napoleonico (Figure 1c), one of the most significant hydraulic structures in the Po Plain,
whose function since the late 1960s has been that of diverting the Reno River water into
the Po River during floods and vice versa during drought periods. The river gauge at
Pracchia also provides a nearly complete time series of the Reno River runoff (Figure 2).
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Despite its location in the high Apennine and the relatively limited drainage area upstream,
a significant, slight decrease in river discharge occurred. In terms of seasonality (by
considering the sole Casalecchio di Reno time series) the monthly mean data show clear
and significant decreasing trends, with the lowest discharge values during summer (namely
June, July, and August), marked decrease trends for both winter (December, January, and
February) and autumn (September, October, and November), and a stronger decrease
during spring (March, April, and May) (Figure A2a).
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The stacked monthly rainfall time series (Figure 3b) showed a negative but not signifi-
cant trend (−0.07 ± 0.08 mm·year−1); the same was true for most of the individual rain
gauges (Figure A3). Seasonality within the rainfall stacked curve shows the same behavior
as that described by Pavan et al. [40], with the minimum values observed during summer
and the maximum in autumn (Figure A2b); however, only the other two seasons (winter
and spring), comparable in terms of both the amount of precipitation and trends, denote a
significant decreasing trend.

The monthly mean temperature trends over the Reno and Lamone river basins
during the last century almost all showed statistically significant increases (Figure A4).
The stacked temperature curve (Figure 3c) shows a statistically significant increase of
0.016 ± 0.007 ◦C·year−1, which corresponds to a warming of over 1.5 ◦C during the last
century. The variability of temperature highlights an increasing and significant trend for
all seasons (Figure A2c). During autumn, however, the trend is very slight, while stronger
warming for the last century is observed in winter. Monthly mean temperatures ranged
from 9 to over 14 ◦C at the highest station in the Apennines (Maresca) and urban areas
in the plains (Bologna, Ferrara, and Imola), respectively, showing thermal variability due
to both elevation and urbanization. Moreover, the latter has caused an urban heat island
effect, which affects local and regional air temperatures near densely settled areas [121];
its main impact is a large increase in nighttime temperatures [122]. In addition, the local
topography and land use have led to large variability in temperature, with the minimum
(5.5 ◦C at Maresca) and maximum (18.6 ◦C at Bologna) averages differing by over 13 ◦C.
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However, grouping datasets from similar geographic contexts allows for a gross assessment
of the variability induced by land use and local topography. Long-term minimum and
maximum averages from the Apennine datasets were 0.2 and 2.4 ◦C lower than those from
the rural plains, respectively. In contrast, maximum averages in the rural plains were not
substantially different from those in urban areas (0.16 ◦C), whereas minimum averages
were approximately 1.6 ◦C higher in urban areas.

The four-year low-pass filtered time series of wet days in Figure 3d shows a nonlinear,
cyclic pattern, with minima during the 1920s, 1940s, and the early 1980s–2010. However,
the >95th and >99th percentile values of the SDII do not give a clear pattern throughout the
century; rather, they suggest an intensification of their occurrence, beginning in the 1970s.

Figure 3e shows the evolution of the SPEI during 1921–2019 in 48-month intervals.
Paulo et al. [123] categorized the SPEI drought classes as non-drought (greater than −0.5),
mild (−0.5 to −1), moderate (−1.5 to −1), severe (−1.5 to 2), and extreme (less than
−2) conditions. In our data, moist and dry periods fluctuated throughout the century,
in agreement with the wet days (Figure 3d); however, the wet periods have declined in
recent decades. Since the 1980s, drought conditions have been increasingly persistent.
Furthermore, extreme drought conditions only occurred during the 1940s and recently.

Trends in ground snow cover percentage (Figure A2d) over the area under study
denote a marked and significant decrease in winter (−0.58 ± 0.18 %·year−1) over the
period 1950–2022, corresponding to a decrease in the winter snow surface of about 63% in
the last 72 years; no significant trends emerged from both autumn and spring.

RSL data from the RTG time series (Figure 4a) clearly indicates a higher rate of sea-level
rise during 1940–1980, compared to the prior and subsequent periods. This behavior wit-
nesses the well-known subsidence phenomena due to local human activities (exploitation of
gas and water from the underground) which overlapped with the natural land subsidence
of the area [124,125]. However, subsidence has slowed significantly since the 1980s, mainly
due to safeguarding policies introduced by the regional administration. Accounting for
the TTG time series (Figure 4b) as a stable reference at the century scale, Zerbini et al. [126]
evaluated the natural subsidence at the RTG site at around 1.88 mm·year−1, by considering
the period prior to the start of the mining activity (1873–1922); this value is in agreement
with previous geological investigations [127–129] and with the first portion of the TTG-RTG
time series of Figure 4c. The estimated trend of the RTG time series (1875–2016), detrended
for VLMs (Figure 4d) is 1.3 ± 0.2 mm·year−1, which is comparable with the TTG estimate
of 1.33 ± 0.17 mm·year−1 (1875–2021).

3.2. Nonlinear Signal

The EMD-decomposed time series of river discharge, rainfall, and temperature are
shown in Figure 5a–c respectively, along with the sea level time series from the corrected
RTG (Figure 5d). EMD decomposition produced seven IMFs for each of these four time
series; however, to focus on long-term variability, only the lowest frequency IMFs (IMF4,
IMF5, and IMF6) and RES were considered.

The RES component in river discharge was not perfectly linear but decreased over
time; this decrease was 90% and 190% greater during 1993–2021 compared to that during
1950–1980 and 1921–1950, respectively. The RES in both rainfall and temperature show
non-monotonic behavior, suggesting the presence of cycles longer than the time series them-
selves. In detail, rainfall decreased during 1950–2000 but otherwise increased. In contrast,
temperature has increased since the 1920s; although it dropped slightly during the 1960s
and 1970s, it has strongly increased since the 1980s. Conversely, the RES in sea level consis-
tently increased over the last 140 years. RES trends (Table 1) were statistically significant in
all cases, even for rainfall, in contrast to the original time series (see Section 4.1).
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The time series compared with the NAO and AMO climate indices (Figure 5e,f) show
significant (95% CI) negative correlations of NAO phases with river discharge, rainfall,
and sea level of −0.31, −0.16, and −0.34, respectively. In contrast, air temperature was
positively correlated with both NAO (0.26) and AMO (0.21) fluctuations, and the sea level
correlated with the AMO (0.14) index. However, only the air temperature-NAO correlation
was statistically significant at the 95% CI, while the correlations with the AMO index
become significant only if the 90% CI is considered. No correlations were found between
the AMO with either river discharge or rainfall, nor was the WeMO index with any variable
considered. Since no correlation was found on any annual time series representative of this
area, the latter is not further discussed in this paper.

Several periodicities “contaminate” the time series, as detected by the LSP analysis
(Table 2). Most are common to all the datasets, albeit with different values. Periodicities of
4–5 and 8–9 years were detected in all the time series and are dominant within the IMF4 of
rainfall and temperature and the IMF4 of sea level, respectively (Figure 5). Additionally,
an approximately 6-year periodicity, which is dominant in the IMF4 of river discharge, is
not present in the temperature and sea level. At lower frequencies, only the approximately
12-year period is common among all the time series, while periods of 10–11, approximately
14, and 16–17 years are dominant within IMF5 of rainfall, river discharge and temperature,
and sea level, respectively. A periodicity of 22–23 years is common to all time series (domi-
nant in the IMF6 of river discharge and temperature) when considering >20 years, whereas
in rainfall and sea level, a powerful periodicity of approximately 40 years characterizes
IMF6. Furthermore, two periodicities prevail at the longest wavelength: 53–56 years for
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river discharge and temperature, and approximately 67 years for sea level. All these peri-
odicities occur in the NAO and AMO time series (Table 2), often with values common to
both indices, and fluctuate in phase or anti-phase (as described above) with the IMFs of all
the decomposed time series.
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Table 1. Datasets considered in this study and related residual trends.

Station Variable Residual
Rate (*·Year−1) Period

Casalecchio di Reno
(Reno River)

River
discharge

(m3/s)

−0.202 ± 0.002 1921–2021

−0.101 ± 0.004 1921–1950

−0.190 ± 0.001 1950–1980

−0.268 ± 0.002 1993–2021

Stacked rainfall Rainfall(mm)

−0.101 ± 0.005 1921–2021

0.157 ± 0.004 1921–1950

−0.263 ± 0.005 1950–2000

0.200 ± 0.006 2000–2021

Stacked temperature Temperature
(◦C)

0.032 ± 0.002 1925–2021

0.040 ± 0.001 1925–1950

−-0.007 ± 0.001 1950–1980

0.071 ± 0.001 1980–2021

Marina di Ravenna
(VLM corrected)

Sea level
(mm) 0.786 ± 0.008 1875–2016

Note: * symbol: unit of measurement of the specific variable.
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Table 2. Most evident periodicities that affect the variables considered in this study, and their related
Standard Normalized Power (Snp, according to Baluev [120]). Indications in parentheses for some
periodicities highlight their dominance within a specific IMF.

Variable Period Snp

NAO

4–5 0.041

~6 0.042

7–8 0.087

8–9 0.023

~12 0.012

~14 0.022

16–17 0.011

22–23 0.04

37–40 0.04

AMO

4–5 0.015

~6 0.018

7–8 0.025

8–9 0.05

10–11 0.047

16–17 0.018

20–22 0.012

~67 0.5

River discharge

4–5 0.056

~6 (IMF 4) 0.073

8–9 0.037

10–11 0.072

~12 0.068

~14 (IMF 5) 0.058

16–17 0.028

22–23 (IMF 6) 0.056

33–35 0.052

53–56 0.097

Rainfall

4–5 (IMF 4) 0.094

~6 0.038

8–9 0.035

10–11 (IMF 5) 0.052

~12 0.027

16–17 0.019

23–26 0.021

38–41 (IMF 6) 0.061
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Table 2. Cont.

Variable Period Snp

Temperature

4–5 (IMF 4) 0.04

8–9 0.03

~12 0.042

~14 (IMF 5) 0.06

16–17 0.02

22–23 (IMF 6) 0.07

30–33 0.022

53–56 0.19

Sea level

4–5 0.039

8–9 (IMF 4) 0.043

10–11 0.02

~12 0.038

~14 0.076

16–17 (IMF 5) 0.079

22–23 0.06

28–30 0.13

40–42 (IMF 6) 0.29

~67 0.16

3.3. Land Use Changes

Recent land use changes within the Reno and Lamone River basins were categorized
using the first level of the Corine Land Cover code as artificial areas, agricultural areas,
forests and semi-natural areas, wetlands, and water bodies (see also Heymann et al. [130]).
The land use changes in the Apennines for both basins (Figure 6) highlight that agricul-
tural areas have been replaced since the 1970s, mainly by forests and semi-natural areas
(approximately 70%) and some artificial surfaces (30%). Recent reforestation in the upper
ER river basins has been driven by the migration of rural populations to urban areas and
consequent cropland abandonment [32,34].

Trends in the plain sector have been nearly constant since the second postwar period,
when the landscape began changing, following a rapid shift from a largely peasant economy
to an industrial and touristic economy [131,132]. This has caused a gradual reduction in
agricultural areas and intensive urban sprawl. This “uncontrolled spread of towns and
villages into undeveloped areas” [133] has increased soil sealing due to impermeable artifi-
cial materials, which are considered the largest issue for pervasive soil degradation [134].
Moreover, the area of sealed soils (excluding areas such as gardens, urban wastelands, and
parks) has increased by approximately 123% since 1976. Thus, sealed surfaces accounted
for approximately 83% of the total artificial areas in all six analyzed maps. Figure 6 shows
that forests and wetlands represent very little of the land use in the plains, which is a
consequence of human activities beginning with progressive deforestation by the Romans
during the first century B.C. and land reclamation of swamps and salt marshes, begun in
the 1800s and completed in 1964. Finally, the slight increase in water bodies in the plains
was primarily due to progressive increases in artificial basins (over 120%) and, to a lesser
extent, in waterways and irrigation canals (approximately 45% increase).
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4. Discussion
4.1. Climatic and Hydrological Variability Induced by the Anthropogenic
Dimming/Brightening Phenomenon

Surface water runoff has decreased in several areas of the ER region in recent decades [135].
Local water scarcity has been driven by the onset of persistent drought conditions, which
began in the 1980s and have worsened, as also suggested by the SPEI (Figure 3e); conditions
are projected to further deteriorate over the next decades [136,137].

In our analysis, air temperature (Figure 3c) showed an increasing trend over the last
century, as previously observed throughout the ER region by Antolini et al. [38]. How-
ever, the RES curve of temperature (Figure 5c) showed an increase from the 1920s to
1950s, a generally stable (or slight cooling) period until the late 1970s, and rapid warm-
ing thereafter. This general behavior in temperature, as previously observed through-
out Italy [138–140], Europe [141,142], and worldwide [143], has been linked to a dim-
ming/brightening phenomenon [144,145] from surface solar radiation (SSR) changes over
the last century [146,147] driven by anthropogenic air pollution, which altered the trans-
parency of the atmosphere [148–150]. The marked change around 1980 led to a “global
warming-type drought” [151,152]; its effects on water evaporation and local temperature
have been further accentuated by the presence of artificial surfaces.

Despite the lack of statistical significance (Figure A3), the decrease in rainfall over the
last century over large portions of the ER was mainly attributed to a decrease in spring and
winter rainfall [38–40,153,154], as confirmed by our analysis (Figure A2b). However, when
the oscillations are removed, a significant decrease and non-monotonic behavior are visible
(Figure 5b). The latter is likely due to the anthropogenic dimming/brightening process de-
scribed above, as any change in SSR leads to large modifications in the water cycle [155,156].
Wild [157] have found evidence of concurrent decreases in rainfall and SSR from the 1950s
to 1980s across the Northern Hemisphere, followed by rainfall intensification from the 1980s
onward because of subsequent brightening and increased evapotranspiration [158]. This
is consistent with our results, although rainfall resumed long after the 1980s (Figure 5b).
This may be due to climatological moisture divergence over the Mediterranean, which
transports water vapor outside the region; therefore, moisture does not fully translate to
regional increases in rainfall [159–161]. Moreover, this phenomenon is likely connected to
a possible increase in rainfall extremes [161,162], as also suggested by the increase in the
>95% SDII values from the 1970s (Figure 3d). This could be strictly linked to the concordant
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reduction in rainy days, and in this case, not necessarily associated to a substantial decrease
in rainfall totals. It can be argued that, following this decline in the 1970s, the amount of
total monthly rainfall has not changed considerably (Figures 3b and 5b), and therefore falls
in a shorter time.

4.2. Anthropogenic Influences at the River-Basin Scale

The river discharge time series in this study shows a significant decreasing trend
since the 1920s (Figures 3a and A1), in agreement with Preciso et al. [37]. Unfortunately,
data on bedload materials are lacking, and the relationship between them and river flow
discharge cannot be verified [32]. As stated in Section 1, the Reno catchment no longer
represents the primary sediment source for the coast, primarily because of reforestation
in the catchment since the 1950s [37]. This was confirmed by our analysis (Figure 6);
increased forest cover represents the prevailing land use change in the Apennines portion
of both basins (see [163]), which likely influenced the reduction in discharge and sediment
production. The decrease in discharge showed a negative acceleration in the RES curve
(Figure 5a) during 1950–1980, compared to the previous 30 years, which is due to the
influence of both river regulation and reforestation, as pastures, shrubs, and crops, consume
much less water than forests [164–166]. However, the huge decrease during the following
years (1980–2021; Table 1 and Section 4.2) cannot be attributed to river regulation. First,
the increase in reforested areas has remained constant, although it has slowed since the
mid-1990s. Second, the notable increase in temperature since the 1980s (Figure 5c) has
significantly increased the atmospheric evaporative demand and led to persistent local
drought conditions (Figure 3e), which, coupled with evapotranspiration, may have driven
further declines in discharge. The non-monotonic variation in rainfall (Figure 5b) also
contributed to the decreased river discharge since the 1950s; however, its significant but
slight changes played a secondary role to the above processes. Furthermore, another
consequence of the increasing temperatures may be the decreasing extent of snow cover
and number of days with snow present on the Italian peninsula [41] and throughout the
Northern Hemisphere [167] over the last century, especially since the late 1970s. Declining
snow cover extent throughout the upper catchment areas during winter (Figure A2d) could
be a further driver of the reduced river discharge by weakening or even depriving the
fluvial systems of water supplied by snowmelt [168,169]. The decline in snow cover extent
throughout the upper portion of the studied catchments area can be ascribed as the main
driver for the deterioration in spring trends of river discharge (Figure A2a), by weakening,
or even depriving, the fluvial systems of the water supply due to the melting of snow.

Once eroded, soil particles can undergo transportation-deposition cycles throughout
their travel downstream and either remain within the basin or outflow from it. Thus,
processes throughout the plains, usually of anthropogenic origin, are crucial for sediment
supply. Our analysis noted that agricultural areas are substantially decreasing in the plains
of both basins (Figure 6) and are being replaced by artificial surfaces and, to a lesser extent,
water bodies. The increase in the latter, despite the small area, may have significantly
influenced discharge by withholding water from the system. Artificial basins (+120%
during 1976–2017) and irrigation channels (+45%) have been continuously implemented
throughout the plains to satisfy increasing water demand. Intensive groundwater with-
drawals in these areas, mainly for industrial and domestic needs [170], also contributed
significantly to the decreased discharge, as over-exploitation of aquifers weakens (and
often prevents) natural river recharge from the aquifers. The increased temperatures and
UHI effect also directly influence the evaporative processes and water demand for both
agriculture and domestic needs in the plains. These processes have been magnified during
recent decades owing to urban sprawl, the increase in artificial surfaces (Figure 6), and
soil sealing (+123% during 1976–2017). The latter reduces and sometimes prevents water
infiltration into soils and, therefore, aquifer recharge, increasing both water scarcity and
dependence on irrigation and artificial reservoirs [171].
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4.3. Natural Contributions from Coupled Ocean/Atmosphere Processes

The NAO influences the weather and hydrology by controlling the wind intensity
and direction and the interactions among air masses over much of Europe, and the
AMO influences several hydroclimatic variables, including Mediterranean air temper-
ature (e.g., [172–175]). Additionally, the sea level in the Mediterranean is influenced by the
NAO, which drives atmospheric sea-level pressure changes [63,176] and the net water flux
at Gibraltar by directly altering wind and oceanic circulation near the strait [177,178] and
indirectly by impacting regional river runoff, evaporation, and rainfall [179]. Moreover, the
AMO influences the SST and sea evaporation [174,179].

Previous studies have found significant correlations between the NAO and Mediter-
ranean surface air temperatures [62,174,180–183]. Our findings of a positive correlation
between temperature and AMO cyclicity (Table 2) agree; however, they cannot be con-
firmed because of the statistical non-significance of the correlation at the 95% CI. Mariotti
and Dell’Aquila [174] have also found no correlation between the AMO variability and
rainfall over the Mediterranean; our study confirms this apparent lack of influence.

Several authors have found significant negative correlations between rainfall and
NAO over Southern Europe and the Mediterranean, with the positive phases of the NAO
linked to drier conditions and vice versa [62,63,139,159,181,184,185]. Generally, positive
and negative NAO phases decrease and increase rainfall, respectively, over Southern
Europe through anomalous behavior of the Atlantic westerlies [184,186], thereby severely
impacting regional hydrological cycles [159]. This is reflected by river discharge variability,
as indicated by our analysis, which shows a significant negative correlation between NAO
phases and river runoff (Figure 5a,e). Negative correlations between river discharge and
NAO have been found throughout Europe [187–190]. However, López-Moreno et al. [191]
note that, unlike rainfall, river discharge is characterized by a nonlinear response of short,
but intense, discharge anomalies during negative NAO phases and persistent, but weaker,
anomalies during positive phases. The same authors highlight that during positive NAO
years, surface runoff and aquifer recharge are severely reduced, whereas during negative
NAO years, river basins receive more rainfall, leading to soil saturation and rapid rainfall
transfer to runoff. Positive anomalies, such as the strong peak observed in river discharge
in 2010 (Figure 5a), may be a consequence of the negative NAO phase that occurred
around 2010, which might have left a record in the river basins and coastal systems.
Granulometric analysis performed by ARPAE (Agenzia Regionale per la Prevenzione,
l’Ambiente e l’Energia—Emilia Romagna) on samples collected in 2012 in the submerged
beach of the studied coastal tract [25] showed larger grain sizes than those from later [36]
or prior [33–35] regional sampling. Excluding the possible effects of local interventions
(i.e., beach replenishment) [36], these variations in grain size may be related to the large,
positive anomaly in river discharge that occurred in 2010. This natural anomaly could have
momentarily strengthened the solids’ contribution to the coast by enhancing the ability
of rivers to carry coarser sediment across the submerged beach through the river mouth
bypassing and subsequent redistribution by longshore currents. Thus, the generalized
increase in grain size observed in the studied coastal stretch and elsewhere in the nearshore
ER coast in 2012 could have been associated with this short-term event, which temporarily
disrupted the tendency towards gradually finer and weaker sediment supply observed in
recent decades.

At the ER coast, persistent sea-level rise (Figure 5d), periodically altered by various
cyclicities, inevitably impacted shoreline evolution. The large positive sea-level anomaly
shown in the IMF4 in Figure 5d, has also been observed in previous studies throughout the
Mediterranean [178,192,193] and has been attributed to a strongly negative NAO [194]. The
dominant periodicity observed in sea-level fluctuations was approximately 8–9 years, which
is comparable to the approximately 10-year periodicity found by Bonaduce et al. [112].
Additionally, Galassi and Spada [111] associated the 2010 sea-level anomalies with the
coincidence of both negative NAO and positive AMO phases, which has a periodicity of
approximately 20 years.
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Since the 1990s, sea level has risen rapidly throughout the Mediterranean, which
has been linked to increased SST [195], mostly controlled by increasing air temperatures.
This also happened during the early 20th century, the other major period of constant rise
in global sea and air temperatures [196]. The sea level oscillations at the RTG during
these periods are described by IMF6 (Figure 5d), which has a dominant periodicity of
approximately 40 years (Table 2). Indeed, major sea-level changes at the RTG over the
last 140 years (excluding the effects of local VLMs) were described by multiple phases
of acceleration, during the early 20th century, the 1970s–1980s, and 1990s to mid-2000s.
Moreover, this behavior is highly phase-correlated with the rainfall IMF6 (Figure 5b), which
is also characterized by a similarly dominant periodicity. The NAO may be the driver
of this process, because it has a similar periodicity (approximately 37–40 years) and a
good negative correlation with both sea level and rainfall. For the same study area, Meli
et al. [114] noticed a slight negative acceleration in sea level change since the mid-2000s
and attributed it to the possible presence of periodic signals at periods longer than the
26-year period they considered. Therefore, this recent change in the local sea level trend
could be associated with the above periodicities, as the final portion of the sea-level IMF6
denotes a temporally concordant, progressive flattening of the rising trend that began in
the early 1990s.

5. Conclusions

The environmental and climatic data considered in this study provide a holistic view
of the hydrological and climatic processes that have affected the Reno and Lamone river
basins of the ER coastal areas in Northern Italy over the last century. The analysis provided
responses to the questions posed in Section 1.

• The anthropogenic footprint, attributed to effects such as land use changes and the
large-scale anthropogenic dimming/brightening phenomenon, acting at both the river
basin and regional-to-global scales, profoundly impacts the catchment dynamics by
driving long-term, nonlinear trends, upon which natural oscillations are superim-
posed. Interactions with major climate modes, in fact, affect the signals over various
periodicities. Both positive and negative correlations among some of the studied
parameters and the main climatic indexes (NAO, AMO, WeMo) are evidenced;

• The marked negative acceleration in river discharge provides an indication of the
lack of recovery in terms of sediment supply to the coast, despite safeguard policies
introduced by the ER regional administration in the early 1980s. This decline resulted
from river regulation and land use changes during 1950–1980 and related implications.
Moreover, since the 1980s, local air temperatures have increased significantly, leading
to persistent drought conditions contributing to the drastic reduction in river discharge.
However, periodic natural signals can significantly restore the river discharge, as
observed during the strongly negative NAO event in 2010;

• Persistent sea-level rise has affected the coastal site under study over the last 140 years.
Apart from the extremely high rates during the 1950s–1980s due to anthropogenic-
induced land subsidence, sea level is periodically amplified or reduced by natural
fluctuations, such as that observed in 2010, and lower frequency fluctuations in the
local sea level, as during the early 20th century, 1970s–1980s, and 1990s to mid-2000s.
This nonlinear behavior, locally enhanced by subsidence that overwhelms the river
sediment inputs, notably impacted the ER coast and may continue to do so.

Overall, the interconnection found between various climatic, hydrological, and anthro-
pogenic processes with individual nonlinear behaviors illustrates the need for a holistic
approach when considering complex environments such as LECZs and heavily anthropized
areas. Expanded observation and monitoring at the scale of entire river basins is neces-
sary to better understand the natural and anthropogenic influences on coastal behavior.
This approach should be thoroughly considered in coastal management and in adaptation
strategies, especially when facing a changing climate and increased vulnerability in the
most threatened environments, such as LECZs.
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Overview:

This analysis deals with the main variability of sea–level trends across the Mediterranean

Sea and its sub–basins, observed from altimetry (geocentric sea level) and investigates the

related contributions of changes in water temperature (thermosteric effect) and salinity

(halosteric effect), which together account for the steric component of sea level.

Open question:

What is the main variability of sea–level trends in the Mediterranean Sea?

80

https://doi.org/10.3389/fmars.2023.1150488


Sea-level trend variability in the
Mediterranean during the
1993–2019 period

Matteo Meli 1*, Carolina M. L. Camargo 2,3,
Marco Olivieri 4, Aimée B. A. Slangen 2

and Claudia Romagnoli 1

1Department of Biological, Geological and Environmental Sciences, University of Bologna,
Bologna, Italy, 2Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea
Research (NIOZ), Yerseke, Netherlands, 3Department of Geoscience and Remote Sensing, Delft
University of Technology, Delft, Netherlands, 4Istituto Nazionale di Geofisica e Vulcanologia (INGV),
Sezione di Bologna, Bologna, Italy

Sea-level change is one of the most concerning climate change and global

warming consequences, especially impacting coastal societies and

environments. The spatial and temporal variability of sea level is neither linear

nor globally uniform, especially in semi-enclosed basins such as the

Mediterranean Sea, which is considered a hot spot regarding expected impacts

related to climate change. This study investigates sea-level trends and their

variability over the Mediterranean Sea from 1993 to 2019. We use gridded sea-

level anomaly products from satellite altimetry for the total observed sea level,

whereas ocean temperature and salinity profiles from reanalysis were used to

compute the thermosteric and halosteric effects, respectively, and the steric

component of the sea level. We perform a statistical change point detection to

assess the spatial and temporal significance of each trend change. The linear

trend provides a clear indication of the non-steric effects as the dominant drivers

over the entire period at the Mediterranean Sea scale, except for the Levantine

and Aegean sub-basins, where the steric component explains the majority of the

sea-level trend. The main changes in sea-level trends are detected around 1997,

2006, 2010, and 2016, associated with Northern Ionian Gyre reversal episodes,

which changed the thermohaline properties and water mass redistribution over

the sub-basins.

KEYWORDS

Mediterranean Sea, sea-level change, satellite altimetry, steric component,
thermosteric and halosteric effects, trend variability, sub-basins scale variability

1 Introduction

Sea-level change observations have been considered one of the key aspects of climate

change reconstruction over the last few decades because of their interconnection with all

other climate indicators, such as atmospheric temperature. Therefore, global mean sea-

level assessment has been one of the main objectives of different studies in the past few

decades (Fox-Kemper et al., 2021).
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Global mean sea-level change is determined by mass addition,

driven by continental ice melting and changes in land water storage,

and the steric effect that is driven by changes in water column

density induced by salinity (negligible at the global scale) and

thermal fluctuations (Levitus et al., 2012; Fox-Kemper et al.,

2021). However, sea-level change at the global scale is far from

uniform, and on a regional to local scale it can vary greatly from

global mean rates (e.g., Stammer et al., 2013; Jevrejeva et al., 2014;

Slangen et al., 2014). For instance, sea-level trends in the

Mediterranean differ from global mean sea-level trends, mainly

because of its semi-enclosed conditions (Pinardi et al., 2014), and

can even differ from the values observed in the nearby Atlantic

Ocean (Tsimplis and Baker, 2000). Sea level in the Mediterranean

has changed with a rate of 2.5 ± 0.4 mm/yr from 1993 to 2017

(Mohamed et al., 2019a), compared to a global mean rate of 3.2 ±

0.4 mm/yr for a similar period (Fox-Kemper et al., 2021).

Additionally, within the Mediterranean, sea-level trends can differ

from the basin mean (Bonaduce et al., 2016; Mohamed et al., 2019a;

Calafat et al., 2022) due to non-linear local oceanographic processes

(Vera et al., 2009).

Because of the many low-lying densely inhabited coastal areas,

the Mediterranean Sea has been classified as one of the most

susceptible climate change zones worldwide (Giorgi, 2006). Sea-

level rise and related future projections (IPCC, 2021) may

significantly impact coastal populations and activities,

strengthening climate-related concerns and prompting a better

understanding of processes from a global to a regional and local

scale. Furthermore, the low elevation may significantly exacerbate

sea-level rise at several coastal locations throughout the

Mediterranean Sea, due to the local vertical land motion

processes. These are caused by a combination of natural factors

such as the compaction of alluvial sediments and volcanic-tectonic

activity, as well as anthropogenic factors including the extraction of

underground fluids (Gambolati and Teatini, 1998; Syvitski et al.,

2009). These processes can cause land subsidence and amplify the

effects of rising sea levels in these regions (Garcıá et al., 2007;

Wöppelmann and Marcos, 2012; Mohamed et al., 2019b). Thus,

there is a need to understand sea level change at the scale of the

Mediterranean Sea.

This study focuses on sea-level variations in the Mediterranean

Sea region (Figure 1A) to elucidate the large variability that

occurred at both regional and sub-basin scales over the period

1993-2019. Most of the previous studies of the Mediterranean focus

on trends either at the basin scale or in a specific region. Hence,

there is a gap in understanding the changes in sea level variability

over the Mediterranean at a sub-basin scale, likely driven by internal

processes within the domain and masked by averaging at larger

scales. In this framework, this study analyzes the main variability of

sea-level trends observed from altimetry (total sea level) and the

related contributions of changes in water temperature (thermosteric

effect) and salinity (halosteric effect), which together account for the

steric component across the Mediterranean Sea and its sub-basins.

The significance of the variability observed in sea-level trends is

then discussed at different spatiotemporal scales.

1.1 General settings of the
Mediterranean Sea

The Mediterranean Sea is a semi-enclosed, mid-latitude sea

connected to the North Atlantic Ocean by the Gibraltar Strait

(Figure 1A), where the exchange of water, heat, and salt occurs

(Pinardi et al., 2015). The bathymetry of the basin (Figure 1A)

varies significantly around the 1500 m average, ranging from a few

tens of meters of depth (e.g., Northern Adriatic and Southern

Central Mediterranean) to more than 4000 m depth (Tyrrhenian

and Ionian) (Miramontes et al., 2022 and references therein).

The Mediterranean Sea can be divided into different sub-basins

as (from west to east) the Western Mediterranean, Tyrrhenian,

Ionian, Southern Central Mediterranean, Southern Crete,

Levantine, and two marginal seas, Adriatic and Aegean

(Figure 1A). The Western Mediterranean is connected from the

Tyrrhenian by the Sardinia and Corsica channels, while the

Tyrrhenian is connected from the Southern Central

Mediterranean by the Sicily Channel (Figure 1A). Furthermore,

the Southern Central Mediterranean is connected towards the east

to the Southern Crete through the Cretan Passage (Figure 1A),

whereas the connection/division with the Ionian is not purely based

A

B

FIGURE 1

(A) Bathymetry of the Mediterranean Sea with regionalization of
sub-basins (bold) and related borders. (B) Schematic representation
of the surface (black arrows) and intermediate depth (red arrows)
circulation in the Mediterranean Sea, superimposed on the map of
1993-2019 time-mean current velocities at 15 m depth. Both the
bathymetry and current velocities are computed from the
Mediterranean Sea Physics Reanalysis dataset
(MEDSEA_MULTIYEAR_PHY_006_004). The labels of currents are in
italics white, while gyres are in bold cyan. Acronyms: AIS, Atlantic
Ionian Stream; AMC, Asia Minor Current; EAG, Eastern Alboran Gyre;
EIC, Eastern Ionian Current; IG, Ierapetra Gyre; LGG, Gulf of Lion
Gyre; LPCC, Liguro-Provencal-Catalan Current; MIJ, Mid-Ionian Jet;
MMGS, Mersa Matruh Gyre System; MMJ, Mid-Mediterranean Jet;
NIG, Northern Ionian Gyre; PG, Pelops Gyre; RG, Rhodes Gyre; SAG,
Southern Adriatic Gyre; SG, Sirte Gyre; SGS; Shikmona Gyre System;
SSTC, Sicily Strait Tunisian Current; WAG, Western Alboran Gyre.
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on straits or passages but following variations in local bathymetry

and oceanographic processes. Therefore, the latter can also be

defined as a separation criterion in the case of Southern Crete

and Levantine (Figure 1A). Finally, the Adriatic is connected to the

Ionian by the Otranto Strait, whereas the Aegean is connected from

the rest by the Kythira and Kasos straits (Figure 1A). Furthermore,

to avoid confusion among the terms used in this study, we also

define WMed and EMed as the macro-portions of the

Mediterranean west and east of the Sicily Channel, respectively.

The Mediterranean receives ocean water from the Atlantic

Ocean to compensate for a persistent surface water loss, mainly

driven by evaporation (owing to the increase in sea surface

temperature) and a persistent freshwater deficit (Romanou et al.,

2010; Pastor et al., 2018), leading to basin-wide salinification

(Grodsky et al., 2019). Excess evaporation over precipitation,

especially in the EMed, forms high-salinity waters that drive and

maintain the thermohaline circulation in the Mediterranean Sea

through a large salinity contrast that forms between the Levantine

waters and the inflowing waters at Gibraltar (Robinson et al., 2001),

which contrasts with the thermohaline circulation outside the

Mediterranean, dominated by divergences in heat content.

Deep-water masses are distinct between the WMed and EMed

because of the occurrence of the Sicily Channel sill (Figure 1A). The

WMed and EMed deep waters are formed in the Gulf of Lion

(Figure 1A) and the Adriatic, respectively. Deep waters can also

form in the Rhodes Gyre (RG, Figure 1B), namely the Levantine

Intermediate Water (LIW; see Pinardi et al., 2015 and references

therein). The key event for EMed circulation, linked to a yet not

fully understood chain of oceanic, hydrological, and atmospheric

interactions, was the migration of dense water formation from the

Adriatic to the southern Aegean that occurred from the late eighties

to the early nineties (Roether et al., 1996; Roether et al., 2014). This

shift is known as the Eastern Mediterranean Transient (EMT;

Roether et al., 1996; Malanotte-Rizzoli et al., 1999; Theocharis

et al., 1999). It was a prolonged stepped process that culminated

in 1997 with the so-called Northern Ionian Reversal phenomenon

(Pinardi et al., 2015), that is, the shift of the Northern Ionian Gyre

(NIG, Figure 1B) from the anticyclonic circulation mode to cyclonic

circulation (Civitarese et al., 2010). This phenomenon has been

reported multiple times over the last decades (Malanotte-Rizzoli

et al., 1997; Pinardi et al., 1997; Malanotte-Rizzoli et al., 1999;

Larnicol et al., 2002; Borzelli et al., 2009; Gačić et al., 2010; Gačić

et al., 2011; Poulain et al., 2012; Menna et al., 2019; von

Schuckmann et al., 2019), with the surface circulation oscillating

from cyclonic to anticyclonic around 1987, 2006 and 2017 and vice-

versa around 1997 and 2011.

This suggests that circulation reversal is a recurrent

phenomenon that occurs on a quasi-decadal time scale in the

EMed (or Ionian Sea region). However, there is a lack of

consensus regarding the causes of the upper layer circulation

pattern changes in the Ionian (see also Chiggiato et al., 2023).

Some studies attributed it to internally driven processes (Pisacane

et al., 2006; Borzelli et al., 2009; Gačić et al., 2010; Gačić et al., 2011;

Gačić et al., 2014; Theocharis et al., 2014; Reale et al., 2016; Reale

et al., 2017; Grodsky et al., 2019), while others indicated wind

forcing as a possible mechanism (Korres et al., 2000; Demirov and

Pinardi, 2002; Nagy et al., 2019). Regardless of the drivers, reversal

events strongly impact the formation and distribution of water

masses and influence local thermohaline properties throughout the

Mediterranean sub-basins (von Schuckmann et al., 2019).

1.2 The ocean circulation in the
Mediterranean Sea

Circulation in the Mediterranean (see Pinardi et al., 2015 for an

extensive review) reflects its complexity, in which the northern

regions are mainly characterized by cyclonic gyres, whereas

anticyclonic gyres and eddy-dominated flow fields are

predominant in the southern regions (Figure 1B), except for the

northern Ionian Sea (Pinardi et al., 2015). Two types of circulation

cells co-exist: a basinwide thermohaline circulation, driven mainly

by the east-west salinity contrast between the Atlantic Water (AW)

and the LIW, which is mainly limited to the surface and

intermediate layers, and a deep circulation controlled by the

north-south temperature gradient, where the driving mechanisms

are winter air-sea heat losses and vertical convection (Gačić et al.,

2014). Generally, the Mediterranean Sea is characterized by high

salinity, temperature, and density, where net evaporation exceeds

precipitation (Tanhua et al., 2013). This drives an anti-estuarine

circulation at the Strait of Gibraltar (Figure 1A), where the

incoming AW moves mainly eastward (Figure 1B) in the upper

50–100 m layer (Pinardi et al., 2015), overlying the LIW. As the AW

moves east, it transforms into a warmer and saltier water mass due

to wind-induced evaporation, in the Levantine (Lascaratos

et al., 1993).

The circulation of the Mediterranean Sea is composed of several

currents and gyres, as detailed in this paragraph (Figure 1B). The

AW enters the WMed at Gibraltar, it meanders around the two

anticyclonic western and eastern Alboran gyres (WAG and EAG;

Heburn and La Violette, 1990) and then separates into two distinct

currents, the first mainly flows towards the east (Millot, 1985;

Ayoub et al., 1998) while the second flows northward towards the

Balearic Islands and then towards east, along the southern

boundary of the Gulf of Lion gyre (LGG; Madec et al., 1991;

Pinardi et al., 2006). Simultaneously, the northern border of the

cyclonic LGG is intensified by the Liguro–Provencal–Catalan

Current (LPCC; Pinardi et al., 2006), which flows back to the

Balearic Islands towards the southwest. In the Sardinia Channel, the

different current merges and then split further into three branches

(Beranger et al., 2004; Pinardi et al., 2006): one flowing towards the

Tyrrhenian, whereas the other two branches enter the Sicily

Channel, hence the EMed, forming the Atlantic Ionian Stream

(AIS; Robinson et al., 1999) and Sicily Strait Tunisian Current

(SSTC; Lermusiaux and Robinson, 2001; Onken et al., 2003).

In the central EMed, the SSTC flows along the southern coast of

the south-central Mediterranean sub-basin, turning first northward

and then eastward around the anticyclonic Sirte Gyre (SG; Pinardi

et al., 2006). The most prominent oceanographic feature in the

Ionian is represented by the NIG, which is characterized by a quasi-

decadal reversal of the vorticity, from cyclonic to anticyclonic and

vice-versa (see Section 1.1), capable of strongly impacting the
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circulation at the sub-basin scale and beyond, especially by

influencing the AW path by shifting the AIS position (Malanotte-

Rizzoli et al., 1997; Menna et al., 2019). During the cyclonic state,

the AIS is mainly prolonged toward the east, conveying AW directly

to the Cretan passage through the shortest route by an intense

current defined as Mid-Ionian Jet (MIJ; Robinson et al., 2001; Gačić

et al., 2011; Bessières et al., 2013; Gačić et al., 2014). During

anticyclonic phases, the AIS is primarily deflected towards north-

east, meandering the northern Ionian and partially entering the

Adriatic (Vilibić et al., 2012) and the Southern Adriatic Gyre (SAG;

Artegiani et al., 1997) via the Otranto Strait, and then flowing south

towards the Levantine, flanking the Pelops Gyre (PG; Robinson

et al., 1992). In this configuration, the AW flows towards the

Levantine are greatly reduced owing to the weakening of the MIJ

(Gačić et al., 2011), whereas the thermohaline properties of the

eastern EMed changes due to the longer path of the AW to reach the

Cretan Passage (Gačić et al., 2014).

Once the AIS reaches the eastern EMed, passing through the

Cretan Passage, it forms a broad current which flows along the

North African coasts; part of it, branches the Mid-Mediterranean

Jet (MMJ; Golnaraghi and Robinson, 1994). The MMJ is

represented by a free open ocean jet meandering first between the

Ierapetra Gyre (IG; Robinson et al., 1991), the Rhodes Gyre (RG;

Milliff and Robinson, 1992), and the Mersa Matruh Gyre System

(MMGS), then partially between Cyprus (Figure 1A) and the

Shikmona Gyre System (SGS; Hecht et al., 1988).

As stated above, the Levantine represents the LIW area of

formation, primarily in the RG, which is representative of the

intermediate depth circulation in the Mediterranean Sea

(Figure 1B) as the average currents between 200 and 300 m depth

(Pinardi et al., 2015), flowing in the opposite direction of the AW

and eventually exiting Gibraltar (Pinardi and Masetti, 2000). Over

the eastern EMed, the circulation of the intermediate depth

(Figure 1B) is consistent with the surface (Pinardi et al., 2015).

Exiting the Cretan Passage and Kythira Strait, the LIW branches

into three streams (Pinardi et al., 2015): the first turns east towards

the Levantine, the second southward to the SG, and the third

towards the Adriatic. The latter is influenced by the NIG, which

strongly enhances (reduces) the flux during cyclonic (anticyclonic)

phases (see also Menna et al., 2019), whereas the branch that joins

the SG arises as the preferred path of the LIW westward (Pinardi

et al., 2015). In the WMed, part of the LIW enters the Western

Mediterranean through the Sardinia Channel and directly reaches

Gibraltar (Puillat et al., 2006), while the other part flows cyclonically

along the Tyrrhenian border and finally exits across the Corsica

Channel (Figure 1B). The latter, before reaching Gibraltar, flows

cyclonically around the LGG, playing a critical role in dense water

formation (Pinardi et al., 2023).

1.3 Sea level in the Mediterranean Sea

According to Pinardi et al. (2014), five terms contribute to the

mean sea level change when limited areas of the world ocean are

considered, such as the semi-enclosed Mediterranean Sea: (i) the

mass fluxes at the open boundaries, accounting for the net volume

transport at Gibraltar that alters the mass in the domain; (ii) the net

changes linked to the loss or addition of water by surface processes

(driven by processes such as evaporation, precipitation, and river

runoff within the domain); (iii) the density changes induced by

salinity changes (halosteric effect); (iv) the density changes induced

by changes in heat flux (thermosteric effect); and (v) the density

advection term. The latter, however, is several orders of magnitude

smaller than the other four terms, and thus can be considered

negligible (Pinardi et al., 2014). The first two terms are defined as

incompressible terms that, for simplicity, can be referred to as the

mass component. The combined variability of the thermosteric and

halosteric effects is referred to as the steric component. The latter

fluctuates periodically around zero and is superimposed on the

mass component characterized by a yearly and seasonal imbalance

between terms (i) and (ii), giving rise to the regional mean sea-level

tendency (Pinardi et al., 2014).

The mass component is considered the dominant contributor to

the mean sea-level trend in the Mediterranean Sea (Calafat et al.,

2010; Pinardi et al., 2014), while the steric component accounts for

approximately 20% of the total variance (Calafat et al., 2012). This

contrasts with the steric influence at the global scale, which explains

approximately 50%–70% of the total sea level variability (Storto

et al., 2019). However, there are large differences across the

Mediterranean. For instance in the Aegean and Levantine the

steric component explains approximately 52% (Mohamed and

Skliris, 2022), mainly due to the thermosteric effect (Vera et al.,

2009). A direct relationship between sea surface temperature and

sea level in the Mediterranean has been demonstrated in previous

studies (Cazenave et al., 2001; Cazenave et al., 2002; Fenoglio-Marc,

2002), highlighting a continuous and positive trend associated with

sea surface temperature from 1992 to 1999 and for all sub-basins,

except for the Ionian.

Large-scale climatic modes also influence long-term and inter-

annual variability of the Mediterranean sea level (Vigo et al., 2011;

Calafat et al., 2012; Landerer and Volkov, 2013; Tsimplis et al.,

2013), such as the North Atlantic Oscillation (NAO) and the

Atlantic Multidecadal Oscillation (AMO). For example, NAO

positive and negative phases influence precipitation, air

temperature, and sea level from local (Meli et al., 2021; Meli and

Romagnoli, 2022; Romagnoli et al., 2022) to European scales

(Mariotti and Dell’Aquila, 2012; Criado-Aldeanueva and Soto-

Navarro, 2020). In particular, the NAO drives atmospheric sea-

level pressure changes in the Mediterranean (Tsimplis and Josey,

2001) and alters wind and oceanic circulation near Gibraltar,

influencing the net water flux exchange with the Atlantic Ocean

(Menemenlis et al., 2007; Tsimplis et al., 2013). Instead, the AMO

significantly correlates with heat and salt content (Iona et al., 2018),

influencing sea surface temperature and evaporation (Marullo et al.,

2011). However, the role of these large climatic modes, despite their

importance on the Mediterranean variability at a multidecadal time

scale (Calafat et al., 2022), has a limited effect on the quasi-decadal

time scale variability (Menna et al., 2022) and is not fully

appreciated when short time series are considered (as in the case

of satellite altimetry).

Moreover, the sea-level trend can be considerably influenced at

regional scale by the contribution of glacial isostatic adjustment
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(GIA), the gravitational, rotational, and deformation (GRD) effects,

and the dynamic component of sea level, induced by the lateral

mass transport. In the Mediterranean Sea the GIA contribution is

relatively small (-0.3 mm/yr, Melini and Spada, 2019), while the

GRD effects contributed by about 1.5 ± 0.2 mm/yr over the period

2000-2018 (Calafat et al., 2022). For simplicity, all these terms, plus

the contribution of large-scale modes and the mass component,

from hereon is referred to as the “non-steric effects”.

Strong differences in sea-level trends at the sub-basin scale are a

well-known aspect of the Mediterranean (Bonaduce et al., 2016;

Skliris et al., 2018; Mohamed et al., 2019a), in which variability and

complexity arise from thermohaline changes and local circulation

(Menna et al., 2012; Mauri et al., 2019; Menna et al., 2019; Menna

et al., 2021; Poulain et al., 2021). For instance, the Ionian has in

general a negative sea-level trend (Cazenave et al., 2002; Fenoglio-

Marc, 2002), in contrast to other sub-basins, primarily because of

complexities and changes in the local circulation pattern

(Malanotte-Rizzoli et al., 1997; Pinardi et al., 1997; Malanotte-

Rizzoli et al., 1999).

Regarding non-linearity in sea-level trends, an abrupt change

was observed around 1999, leading to a loss of correlation between

sea surface temperature and sea level after that year (Vigo et al.,

2005). Furthermore, the Ionian began to be characterized by a rising

trend after 1998, which was attributed to the switch of surface

circulation from anticyclonic to cyclonic (Gačić et al., 2010) after

the relaxation of the EMT (Vera et al., 2009, see also Section 1.1).

After that period and since the early 2000s, a non-linear behavior

has been observed in sea-level trends, where a rising condition

peaked in 2003, followed by a drop until 2009 (Vigo et al., 2011).

2 Materials and methods

2.1 Data

Gridded daily mean sea-level anomalies (SLA) at 1/8°x1/8°

spatial resolution over the Mediterranean Sea for 1993–2019 were

obtained from the Copernicus Climate Change Service (C3S). The

dataset was delivered by the DUACS altimeter production system,

which includes data from several altimetry missions, but always

merging a steady number (two) of altimetry measurements at the

same time. This procedure avoids introducing biases and provides

stability and homogeneity of the record over the entire period,

which is crucial for climate applications and long-term evolutionary

analyses (Legeais et al., 2021). All standard corrections (e.g., signal

refraction passing through the atmosphere, sea state bias,

instrumental drift, and dynamic atmospheric correction) were

applied to the dataset (for details, see Taburet et al., 2019).

Monthly average temperature and salinity vertical profiles were

obtained from the Mediterranean Sea Physics Reanalysis dataset

(Escudier et al., 2020), distributed by the Copernicus Marine

Environment Monitoring Service (CMEMS; available at the url:

https://marine.copernicus.eu/). This dataset covers the period

1987–2020, and it has a spatial grid resolution of 1/24°x1/24° and

141 vertical levels (unevenly spaced). The physical dynamics of the

Mediterranean Sea are modeled using an Ocean General

Circulation Model (OGCM) that is based on the Nucleus for

European Modelling of the Ocean (NEMO) code (Madec et al.,

2017). This numerical model is used to solve the primitive equations

of motion that describe the movement of water in the

Mediterranean Sea. The water balance is computed using the

difference between evaporation, derived from latent heat flux

data, and the combination of precipitation and rivers runoff,

derived from various datasets (Escudier et al., 2021 and references

therein). The connection with the Marmara Sea is modeled as a

river (Kourafalou and Barbopoulos, 2003), while the exchanges at

Gibraltar are resolved by extending the model into the north-east

Atlantic Ocean. Temperature and salinity observations are

assimilated into the system through the OceanVar data

assimilation scheme (Dobricic and Pinardi, 2008), which includes

in-situ vertical profiles from the Argo profiling floats, CTDs, and

XBTs from SeaDataNet (https://www.seadatanet.org/) and CMEMS

(INSITU_GLO_NRT_OBSERVATIONS_013_030) database.

Details of this reanalysis dataset are discussed in Escudier

et al. (2021).

2.2 Methods

To cope with the large oceanographic and bathymetric

variability characterizing the Mediterranean Sea, the time series

analysis at the sub-basin scale was made by following the same

partitioning (Figure 1A) outlined by Carillo et al. (2012) and Galassi

and Spada (2014). The C3S altimetry observations were corrected

for GIA using the geoid height estimates (dGeoid) from the ICE-

6G_C (VM5a) model (Argus et al., 2014; Peltier et al., 2015), was

applied to the C3S altimetry observations as a correction for the

GIA effect. Furthermore, to account for the altimeter instrumental

drift that influences the accuracy and uncertainty of the records

between 1993 and 1998 (Watson et al., 2015; Beckley et al., 2017;

Dieng et al., 2017), a TOPEX-A instrumental drift correction

(WCRP Global Sea Level Budget Group, 2018), derived from

altimetry and tide gauge global comparisons, was added to the

C3S sea-level datasets. Although this correction is computed for the

global mean sea level, it can also be used at a regional or local scale

as the best available estimate. This is still preferable to not

correcting at all, given that the regional variation of the

instrumental drift is currently unknown.

The Thermodynamic Equation of Seawater (TEOS-10,

McDougall and Barker, 2011) was used as the equation of state to

compute the steric sea-level component, following Camargo et al.

(2020). The steric (hs) computation is based on the vertical

integration of density anomalies from the maximum local depth

(-H) to the water surface (0), following Gill and Niller (1973) and

Tomczak and Godfrey (2003):

hs = −
1
r0

Z 0

−H
r0dz

where r’ and r0 are the local and reference density anomalies,

respectively. The former is a function of temperature and salinity

variations retrieved from the reanalysis dataset (see Section 2.1).
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Before computing steric anomalies, potential temperature and

practical salinity values are converted to conservative temperature

and absolute salinity (McDougall and Barker, 2011; McDougall

et al., 2012). In addition, the thermosteric and halosteric effects were

also computed and analyzed individually to better appreciate the

influence and evolution of both effects.

Due to the different temporal coverage of the datasets, we

restricted the analyses to the common period from January 1993

to December 2019. Daily time series were converted into monthly

and annual means. Moreover, the mean seasonal cycle was removed

from all the monthly mean time series. To ensure a full

comparability between the datasets, the steric, thermosteric, and

halosteric datasets were regridded from 1/24° to 1/8°, i.e. the

resolution of the altimetry data, using the First-Order

Conservative Remapping method (Jones, 1999), which is

implemented in the Climate Data Operators software.

A non-parametric Mann–Kendall test (Mann, 1945; Kendall,

1975), modified for autocorrelated data (Hamed and Rao, 1998),

was performed to assess the statistical significance of trends at the

95% confidence interval. The Mann-Kendall test was implemented

with the non-parametric Theil–Sen estimator (Theil, 1950; Sen,

1968) to evaluate the preferred slope from the simple linear

regression computed for each time series. The resulting preferred

slope was assumed to be a constant trend (or rate) of the time series

over the selected period. Associated error is determined from the

distribution of values. In principle this can be not normal and lead

to a not symmetric associated error bar. To ease the reading and

result interpretation, we assign a conservative symmetric error by

choosing the largest one.

In this analysis, the Binary Segmentation algorithm (Scott and

Knott, 1974; Sen and Srivastava, 1975) was used to search for the

unknown epoch of change points in the altimetry monthly time

series (de-seasoned, TOPEX-A and GIA corrected). This is among

the most-competitive methods for change point analysis (Cho and

Fryzlewicz, 2015; Rice and Zhang, 2022). The algorithm uses a cost

function, namely the Radial Basis function (Harchaoui and Cappé,

2007), to search for the preferred epoch at which the change point

should be set. Then it uses the change point to split the time series in

two sub-series and it iterates the change point search process until a

predefined stopping criterion (here defined as the max change point

number equal to three) is reached (Truong et al., 2020). Figure 2A

show the detection of change points on a single time series. The

Radial Basis Function was preferred since it belongs to the kernel-

based methods and it is suitable for performing change point

detection in a non-parametric setting (Harchaoui and Cappé,

2007); this model is particularly useful when the change points

are suspected to be irregularly distributed in the time series (Killick

et al., 2012; Truong et al., 2020). Offsets were not present in the

considered dataset.

The detected change points (three for each time series) were

then aggregated at the basin scale, to create a cumulative

distribution (Figure 2B). The occurrence of a change point cannot

be precisely attributed to a single moment in time, as it may be

influenced by a variety of processes that induce a spatially and

temporally varying response in sea level. As a consequence, only

distributions exceeding the 75th percentile were considered and

selected (represented by black bars in Figure 2B), accompanied by

their respective reference medians (indicated by hatched vertical red

lines in Figure 2A). Each median, accompanied by an arbitrary error

margin of ± 1 year (depicted as a red shaded area in Figure 2B),

provided an effective means of clustering the major distributions

into four distinct groups, which were centered around the years

A B

FIGURE 2

Left panel (A) shows one sample of monthly mean sea level time series from the Ionian region (marked by the red dot in the inset map. Red hatched
lines mark the three most likely change point detected by the algorithm described in Section 2.2. The right panel (B) displays the cumulative
distribution (grey bars) for the whole set change points detected in altimetry monthly time series throughout the Mediterranean Sea. Black bars mark
the subset of distributions exceeding the 75th percentile. For each selected distribution, the median (hatched red lines) defines the selected change
point while an arbitrary error of ± 1 year (shaded in red) was introduced to account for potential uncertainties in the analysis.
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1997, 2006, 2010, and 2016. The two distributions localized around

2014 and 2018 were excluded from this clustering, as their

proximity to the 2016 cluster makes them unusable for the analysis.

To properly account for autocorrelation and clean the signal

from interannual variability, the time series were converted into

annual means and the modified Theil-Sen estimator was used to

calculate trends and errors for each sub-series. Subsequently, the

statistical significance (at the 95% confidence interval) of each

change point was evaluated for each time series by applying a

Fisher F-test to the Chow statistics (Chow, 1960; Winer, 1962;

Olivieri and Spada, 2013).

3 Results and discussion

3.1 Linear trend analysis

Figure 3A shows a large spatial variability of the rate of sea-level

rise derived from satellite altimetry (total sea level) for the period 1993–

2019, confirming observations by Bonaduce et al. (2016), despite the

different time windows. The highest positive rates (from ca. 3 to 4 mm/

yr and above) are observed over the Aegean and Levantine, especially

in regions where recurring gyres and eddies in the circulation are

present (PG, MMGS, and SGS in Figure 1B). Conversely, negative rates

(down to over -4 mm/yr) are observed in some portions of the Ionian,

corresponding to the NIG and along the MIJ, and largely in the

Southern Crete along the MMJ and IG; the latter represents the area

with the largest negative rate observed throughout the Mediterranean

Sea. At the Mediterranean basin scale, the average sea-level trend is 2.1

± 0.5 mm/yr (95% confidence interval), comparable with Mohamed

et al. (2019a). However, long-term linear trends of total sea-level

change at the sub-basin scale (see also Section3.2) confirm the

variability observed in Figure 3A as the consequence of local

processes. In detail, values of 1.8 ± 0.6, 2.1 ± 0.8, and 2.5 ± 0.6 mm/

yr are observed for the Western Mediterranean, Southern Central

Mediterranean, and Tyrrhenian, respectively. Higher trends (albeit

comparable within the ranges) are observed for the Adriatic (2.6 ±

0.8 mm/yr), Levantine (2.6 ± 0.9 mm/yr), and Aegean (3.1 ± 1.0 mm/

yr), consistent with Mohamed and Skliris (2022), who found an

average rate of 3.23 ± 0.61 mm/yr for the eastern EMed over the

same period. Conversely, trends for the Ionian (1.6 ± 1.6 mm/yr) and

Southern Crete (0.3 ± 1.3 mm/yr) are non-significant.

The significance of the rate obtained from the trend analysis is

considered by plotting the spatial distribution of the statistics at the

95% confidence interval (CI) in Figure 3A. Dots represent regions

where the null hypothesis cannot be rejected, that is, the significance

of the resulting rate cannot be statistically confirmed. This can be

associated with a null rate and significant changes in the time series

that diverge from the linear model. Notably, these time series have no

significant trend clusters in specific sectors of the Mediterranean Sea,

suggesting that it cannot be the consequence of a randomprocess but,

conversely, related to local dynamics, such as the influence of gyres/

eddies or currents. In detail, a lack of significance in the Western

Mediterranean is observed for sea-level trend from altimetry in the

EAG-Balearic Islands area (hereafter refer to Figure 1 for location). A

very large portion of the Ionian also denotes weak or non-significant

rates, especially in conformity with the NIG, AIS, and along MIJ.

When moving toward the east, a lack of significance is observed in

correspondence with the PG, in a large part of Southern Crete, and a

spot within the SGS. However, the significance in the IG is

noteworthy, representing the only statistically significant negative

rate in the entire Mediterranean Sea from 1993 to 2019.

Steric sea-level trends (Figure 3B) also show wide spatial

variability, described by a progressive increase from west to east.

A B
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FIGURE 3

Trends of total sea level (A), steric (B), thermosteric (C), and halosteric (D) components, computed over the satellite altimetry era (1993–2019). Black
dots mark areas in which the trend is non-significant (95% CI).
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General negative trends are observed throughout the WMed, except

for WAG. A behavior similar to altimetric trends is observed in the

Ionian, where low values are aligned along the AIS and MIJ. Weak

positive values characterized the Adriatic, whereas the Aegean

shows higher positive trends linked to the steric component of

the entire Mediterranean Sea. As for altimetry, steric trends in the

Levantine and Southern Crete can be split into positive and negative

trends, respectively, and negative trends are shown along the MMJ,

with the most prominent (down to -4.5 mm/yr) at the IG.

The statistical significance of the steric component trends

(Figure 3B) tends to be absent throughout the Mediterranean Sea,

characterized by an average non-significant rate of 0.3 ± 0.6 mm/yr.

While almost all sub-basins show a non-significant steric sea-level

trend, the presence of significant trends denotes a patchy pattern. A

few exceptions are the Aegean (2.1 ± 1.3 mm/yr), Levantine (1.1 ±

1.0 mm/yr), and Southern Central Mediterranean (1.0 ± 0.8 mm/

yr), in which the average spatial trends are significant, albeit

spatially uneven. These values denote an influence of the steric

component on the total sea-level change of approximately 68, 42,

and 48%, respectively, for the three sub-basins, consistent with

Mohamed and Skliris (2022), who reported that 52% of the total

sea-level change in the eastern EMed was due to steric effects. In this

case, the behavior of the three sub-basins is consistent with the

global mean, where the steric component accounts for

approximately 44% of the total sea-level change over the period

1993-2017 (Storto et al., 2019). In contrast, the steric component in

the other sub-basins contributes negatively to the long-term total

sea-level trend, except for the Adriatic and Ionian, where it

accounted for approximately 15 and 31%, respectively. This

highlights how a large part of the long-term sea-level trend within

the Mediterranean Sea, except for the eastern EMed, is driven by

non-steric effects (ca. 86%). This is consistent with previous studies,

who found an influence of the steric component over the

Mediterranean of less than 20% and that the mass component

becomes the dominant element for regional sea-level trends (Calafat

et al., 2010; Calafat et al., 2012; Pinardi et al., 2014).

Thermosteric trends (Figure 3C) are generally positive throughout

the domain,withhigh values (>3–4mm/yr) observed in the Ionian (5.3

± 1.0mm/yr), Tyrrhenian (3.0 ± 0.6mm/yr), Levantine (3.3 ± 1.1mm/

yr), Southern Central Mediterranean (3.4 ± 0.6 mm/yr), and Aegean

(2.8 ± 1.0mm/yr). The IG is the only regionwith negative thermosteric

values, which contributes to lowering the average rate of the Southern

Crete (2.4 ± 1.1 mm/yr). Most of the thermosteric rates over the

Mediterranean Sea are statistically significant (average rate of 2.8 ± 0.5

mm/yr), including the IG negative rate, and except for the PG, MMJ-

RG alignment, and the EAG-Balearic Islands region. Lower but

significant thermosteric trends are observed over the Adriatic (1.9 ±

0.6 mm/yr) and Western Mediterranean (2.0 ± 0.6 mm/yr).

In contrast, the halosteric effect (Figure 3D) is characterized by

negative trends (increasing water column salinity, leading to an

increase in sea water density and related volume reduction) in all

sub-basins, with some small spots showing a weakly positive trend in

the Aegean and WAG. At the sub-basin scale, the Aegean shows a not

statistically significant trend of -0.6 ± 0.9 mm/yr, whereas the Adriatic

(-1.5± 0.5mm/yr), SouthernCentralMediterranean (-2.4± 0.5mm/yr),

Tyrrhenian (-2.5 ± 0.7 mm/yr), and Levantine (-2.0 ± 0.8 mm/yr) have

a significant negative trend. Generally, halosteric trends contribute

negatively to the total altimetric sea level across almost the entire

Mediterranean Sea (-2.5 ± 0.3 mm/yr). Stronger negative trend is

observed for the Ionian (-4.9 ± 1.3 mm/yr).

Thermosteric trends are often higher than the total sea level

trends; however, their overall contribution to the steric component

is strongly influenced and lowered by the negative contribution of

the halosteric effect. The opposite contributions of these two effects

have been observed throughout the eastern EMed (Mohamed and

Skliris, 2022) and the North Atlantic Ocean (Storto et al., 2019).

This opposite effect is the direct outcome of the progressive regional

increase in water temperature and salinity (Romanou et al., 2010;

Pastor et al., 2018; Skliris et al., 2018; Grodsky et al., 2019;

Mohamed et al., 2019a; Pisano et al., 2020; Menna et al., 2022).

Additionally, this opposite behavior is the cause of the generalized

non-significance of the steric component over the entire

Mediterranean Sea, as the two opposite effects almost cancel each

other out (Passaro and Seitz, 2010). This highlights the extent to

which the halosteric effect is influential within semi-enclosed basins

at mid-latitudes, conversely to the global ocean where the

thermosteric effect represents the dominant driver of steric

component variability (Robinson et al., 2001; IPCC, 2021).

3.2 Mediterranean sea-level inflections

Following the four change point clusters detected (1997, 2006,

2010, and 2016), each of the variables are reanalyzed for the sub-

periods (1993-1997, 1997-2006, 2006-2010, 2010-2016, 2016-2019).

Figure 4 shows the spatial difference that characterizes each point of

the grid for each variable considered (i.e., total sea level from

altimetry, steric component, thermosteric, and halosteric effects)

between two different sub-periods separated by a selected change

point that acts as a pivotal point in the time series. A positive

(negative) value suggests an acceleration (deceleration) in sea-level

change at a specific location. This could also reflect a sign variation,

namely from negative to positive or vice versa, or just an increase or

decrease in the observed rate. For each of the four change points,

both the complete map of the trend changes (to have an overview

and intensity of the process) and the map with only the statistically

significant trend changes at 95% CI, as determined through the

Chow test (see Section 2.2), are shown. The latter means that any

points which change of trend is considered statistically valid, and

thus better represented by a bilinear model rather than by the

simple linear model. From hereon, for simplicity, the term

“inflection” is defined as a change in rate, positive or negative,

occurring in a time series in a specific pivotal year.

On the other hand, Figure 5 shows the temporal evolution, with

related significant inflections, of the variables considered at the sub-

basins scale. The time series of average annual mean sea level from

altimetry for the entire Mediterranean Sea (Figure 5A, solid black

line) highlights how the sea level is rising, unlike the steric

component (dashed yellow line), which shows a weak and an

overall non-significant positive trend, consistent with the map in
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Figure 3B. Opposite trends of thermosteric and halosteric

components (red dotted and blue dash-dotted lines, respectively)

over the Mediterranean Sea denote considerable rising and

decreasing trends, respectively (see also Figures 3C, D).

3.2.1 The 1997 inflection
The spatial distribution of the 1997 inflection shows a marked

bimodal behavior at the basin scale (Figure 4) with positive

inflection over a large portion of the Ionian and negative values

FIGURE 4

Rate variations from yearly mean time series for each of the four years (1997, 2006, 2010, and 2016) resulting from the change point analysis for
(from left to right column) the total observed sea level from altimetry, steric component, and thermosteric and halosteric effects. Each inflection of
trends is shown both overall, at the scale of the Mediterranean basin, and only in those sectors where the statistically significant (>95% CI) change of
trend occurred. Positive (negative) inflections are shown in reddish (bluish) colors, corresponding to increased (decreased) sea-level trends at a
specific location after the given year (statement in bold in the lower left corner of the maps).
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that characterize most of the EMed. The WMed is characterized by

non-uniform behavior. Considering the entire Mediterranean basin,

an average negative inflection of ca. -6.9 mm/yr occurs between

1993–1997 and 1997–2006. Most of the positive inflections over the

Ionian (Figure 5D) and negative ones in the Aegean (Figure 5C),

Southern Crete (Figure 5G), Levantine (Figure 5E), and Adriatic

(Figure 5B) are statistically significant (see also Figure 4).

Furthermore, part of the Southern Central Mediterranean also

has significant negative inflections. Changes in the steric trends in

1997 show a large similarity to altimetry regarding spatial

A B
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FIGURE 5

Annual sea level time series from altimetry (black solid line), steric (dashed yellow), thermosteric (dotted red), and halosteric (dash-dotted blue)
components over different spatial scales (see also map at the top of figure): Mediterranean Sea (A), Adriatic Sea (B), Aegean Sea (C), Ionian Sea (D),
Levantine Basin (E), Southern Central Mediterranean (F), Southern Crete (G), Tyrrhenian Sea (H) and Western Mediterranean Basin (I). Vertical lines
denote significant changepoint in the related component (same color and line style) at a specific time. Trends refer to the period 1993–2019.
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distribution and statistical significance; indeed, the steric negative

inflection at the scale of the Mediterranean Sea is -6.7 mm/yr, in

agreement with the altimetric value.

Both thermosteric and halosteric effects show a positive

inflection in a large part of the Ionian, albeit not overlapping but

characterizing opposing sectors, that is, south-west for the

thermosteric and northeast for the halosteric, with the latter

almost entirely significant. In contrast, inflection owing to the

thermosteric element, apart from the Ionian, shows negative

values for the entire Mediterranean Sea, with large areas of

significant inflection in the Levantine. Similarly, the halosteric

inflection denotes areas with a significant change in trend:

positive values, besides the eastern Ionian, characterize large parts

of the Levantine and Western Mediterranean regions, while the

negative ones are particularly relevant in the Southern Central

Mediterranean. The thermosteric effect inflection at the

Mediterranean scale accounts for approximately 97% of the steric

component inflection, whereas the remaining 3% is attributable to

the halosteric effect.

The time series representative of the Ionian (Figure 5D) denotes

a unique non-linear behavior in the altimetry, with an abrupt and

significant positive inflection around 1997 for all variables. The

1997 positive inflection that characterizes the Ionian, for total and

steric components, represents a direct consequence of the switch of

NIG from anticyclonic to cyclonic circulation after EMT relaxation

(Vera et al., 2009; Gačić et al., 2010). The total sea level in the Ionian

is therefore characterized by a long-term rising trend when only

data from 1997 are considered (see also Vera et al., 2009), and the

strong inflection that occurred in 1997 is the cause of the lack of

significance in the Ionian trend over the period 1993-2019

(observed in Figure 3A).

According to Vigo et al. (2005), the changes of state in the

thermohaline circulation in this phase led to a ‘breathing’

oscillation, possibly linked to an in-phase cooling/heating of the

whole Mediterranean Sea or a loss/addiction process of water mass;

this is also observed in this study for total and steric 1997 inflections

across the whole EMed (Figure 4), where all sub-basins trends move

up and down in phase, reaching a peak-to-peak amplitude of

approximately 10 cm. Conversely, no significant inflections arise

in theWMed (Figures 4, 5H, I), confirming the observations of Vigo

et al. (2005).

The shift to a cyclonic phase led to the reinforcement of the AW

flux along the MIJ towards the Levantine, thus diluting the surface

waters and modifying the thermohaline properties of the latter

(Gačić et al., 2011; Gačić et al., 2014), possibly becoming fresher and

cooler. During the cyclonic phase, the AW reaches Levantine,

traveling eastward directly from the Sicily Channel. The related

consequences can be observed in Figure 4, where significant 1997

inflections in Levantine are negative for the thermosteric effect

(water contraction due to lower temperature) and positive for the

halosteric effect (water expansion due to lower salinity), especially

in the RG. The latter represents the area of the main formation of

the LIW (Pinardi et al., 2015 and references therein) which then

flows westward through the Cretan Passage and Cretan Sea

(entering and exiting the Kasos and Kithira straits, respectively),

which explains the generalized, significant positive (negative)

inflection that characterizes the eastern Ionian (Figure 4), where

fresher (cooler) waters were carried toward the northwest along the

LIW path. Conversely, the thermosteric effect provides a significant

positive inflection along the western flank of the Ionian, ascribed to

the replacement of the AW masses (deflected toward the northern

Ionian during the previous anticyclonic phase) with those from the

Levantine, with a long period to heat up and are relatively warmer

than the AW that directly enters the Sicily Channel. This also

influenced the Adriatic water properties, especially at the SAG,

where relatively saltier waters from the Levantine replaced the AW,

which had previously arrived directly from the Sicily Channel

during the anticyclonic phase (see also Gačić et al., 2013). For the

Adriatic, however, a significant negative inflection is observed in the

altimetry, which cannot be explained by the steric component

(Figures 4, 5B). It can be argued that the altimetry inflection was

caused by the reduction of the AW mass amount entering the

Otranto Strait after the cyclonic regime was established. However,

the influence of internal processes (e.g., river discharge) within the

sub-basin during this phase cannot be excluded.

Finally, the effect observed in the Southern Central

Mediterranean was mainly linked to the salinization of the area

around the SG, leading to a significant negative inflection, ascribed

to the southward path of the LIW (Figure 1B), that is, the preferred

path towards the Sicily Channel (Pinardi et al., 2015), which joins

the SG and flows along the Gulf of Sirte shelf break and eventually

exits the EMed (Sparnocchia et al., 1999; Pinardi et al., 2006). As the

salinity of the SG area during cyclonic phases generally increases, it

suggests that the intermediate depth waters flowing towards the

Sicily Channel (see also Schroeder et al., 2017) drive the steric sea-

level change over this area, despite the presence of AW that flows

along the SSTC at the surface.

3.2.2 The 2006 inflection
Considering the change point occurrence in 2006, the

inflections on the altimetric rate are again distributed according

to a well-defined pattern, consistent with the steric component. In

detail, a relatively bimodal behavior is shown, similar to the 1997

inflection but showing the opposite phase condition, with the

Ionian characterized by negative values, in contrast to all the

other regions that showed positive values (Figure 4). In addition,

statistical significance is found for altimetry, corresponding with the

NIG for negative values and large portions of the EMed for positive

values. Overall, this inflection at the Mediterranean scale led to a

generalized positive change of sea-level trend of approximately 11

mm/yr, with about 50% explained by the steric trend inflection,

which reached 5.5 mm/yr.

The thermosteric and halosteric inflections show a generalized

behavior of opposite signs. The distribution of significance for the

two effects shows different patterns, with the thermosteric

significance limited to some specific areas, while the halosteric one

covers a large portion of the Mediterranean Sea. Furthermore, the

halosteric effect at this stage explains approximately 31% of the steric

component variability; hence, it has a greater influence than the case

of the 1997 inflection. Specifically, for the 2006 inflection, a marked

and homogeneous opposite behavior of thermosteric and halosteric

effects is shown in the WMed.
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The inflection detected in 2006 might be the response of sea

level to the switch of the NIG to an anticyclonic from a cyclonic

state. Cyclonic circulation, established around 1997, shifted again to

anticyclonic circulation in 2006 (Gačić et al., 2014). The onset of an

opposite behavior in NIG circulation led to a further breathing

oscillation throughout the EMed, with all sub-basins moving up and

down in the reversed phase for 1997. The peak-to-peak amplitude

for this inflection point decreased about 1 cm in comparison to the

previous inflection, reaching values of approximately 9 cm for both

the altimetry and steric components.

The shift to anticyclonic NIG circulation also led to opposite

inflections of thermosteric and halosteric sea-level trends (Figure 4) for

2006. During this phase, thewestern Ionian interior was replenished by

the colder and fresher AW that mainly advected northward (Robinson

et al., 1999), entering the Adriatic, affecting the sea surface temperature

and salinity. The halosteric provides a significant (positive) inflection

throughout the whole sub-basin, decreasing the water density in the

whole Adriatic, thus driving a positive steric inflection. However, it is

not strong enough to fully explain the marked, significant positive

inflection observed in the altimetry over the Adriatic, suggesting that

an opposite mechanism, with respect to 1997, impacted the sub-basin.

A possible mechanism could be a greater replenishment of AW

masses, which directly entered the Otranto Strait in the anticyclonic

context. The direct AW flow towards the Cretan Passage was greatly

reduced owing to the absence (or drastic weakening) of the MIJ

caused by the anticyclonic Ionian meander (Gačić et al., 2011). This

state led to a generalized freshening of the Southern Central

Mediterranean (driving the halosteric trend change), as the

portion of AW not deflected northward branched into the SSTC

and SG (Lermusiaux and Robinson, 2001; Onken et al., 2003). Thus,

we can hypothesize that, during this phase, surface circulation is the

dominant driver of steric changes. Furthermore, this state also led to

salinization and warming of the Levantine because of the longer

pathway of the AW reaching the eastern EMed (Manca, 2000).

As observed for the 1997 inflection, significant changes occurred

around RG, influencing (this timewith a negative halosteric inflection)

the formation of the LIW. A lower dilution context increased the LIW

salinity, leading to Aegean salinification with the LIW passing through

the Cretan Sea and eastern Ionian (Theocharis et al., 1999). However,

the significant positive inflection of the thermosteric effect in the

Aegean and Levantine regions, caused by the sea surface

temperature increase during this phase, seems to be the main driver

of the inflection observed in the steric component.

The observations on the WMed time series (Figures 5H, I) and

the spatial distribution of significant inflections (Figure 4) show

negative and positive inflections for thermosteric and halosteric

effects, respectively. The 2006 inflection is not reflected in the

altimetric signal over the WMed and, in the Western

Mediterranean, seems to start earlier, around 2004. This could be

linked to the Western Mediterranean Transition (WMT, Roether

et al., 1996), that was linked to a thermohaline anomaly that

occurred around 2004–2005 and spread throughout the WMed,

inducing freshening and cooling in the deep and intermediate layers

(Schroeder et al., 2010; Zunino et al., 2012; Schroeder et al., 2016).

This agrees with our observations in Figure 4, especially with the

generalized positive, significant inflection in the halosteric effect.

3.2.3 The 2010 inflection
For the 2010 inflection, a well-defined bimodal behavior of the

sea-level trend is also observed, and a good agreement between the

altimetry and steric component regarding spatial variability

(Figure 4). The main pattern is very similar (but with a more

patchy distribution) to that observed for the 1997 inflection when

the same type of reversal (i.e., from anticyclonic to cyclonic) in the

NIG circulation occurred (Gačić et al., 2014). In detail, positive

values characterize the Ionian, whereas generalized negative values

are representative of the entire remaining EMed. Conversely, in

WMed, the pattern appears randomly distributed but with a more

substantial positive value. Most of the Mediterranean shows

significant inflections in altimetry, especially in areas with

negative values, almost the entire Adriatic, Levantine, and

Southern Central Mediterranean. Positive significance emerges

only corresponding to the NIG, PG, and over part of the Western

Mediterranean region. The 2010 inflection, at the scale of the

Mediterranean Sea, provides an average negative value of

approximately -8.9 mm/yr, which is lower but similar to the 1997

inflection. In this case, the steric inflection is weaker than the

variation observed in the total sea level, reaching about -1.6 mm/yr.

The peak-to-peak amplitude remains the same as in 2006 for the

altimetry and steric components, with a value of approximately

9 cm. Conversely, the contribution of the non-steric effects to the

2010 inflection seems to increase again (ca. -7.3 mm/yr) but

negatively, enhancing the effect of the steric component on the

total sea level. Regarding the steric component influence, the

thermosteric effect accounts for approximately 68% of the average

2010 steric inflection, similar to that observed in 2006.

A similar behavior to the 1997 of thermosteric and halosteric

effects is shown in 2010 in the EMed, while major differences arose

in the Adriatic and Aegean, showing some significant inflections

with opposite signs than 1997. In detail, the same sea water

freshening in the RG area occurred, influencing the LIW

properties, which propagated westward through the Cretan

Passage and Cretan Sea and eventually changed the salinity of the

eastern Ionian and Aegean. The latter, different from 1997, seems to

have been impacted entirely by the freshening, while cooling,

similar to 1997, is observed. In the Adriatic, the inflections of

both effects are noticeable and more marked in 2010 than in 1997,

with significant warming and salinization owing to the replacement

of the AW (directly entering during the previous anticyclonic

phase) with the waters coming from the Levantine. More

prominent than in 1997, the generalized negative inflection

observed in the altimetry over the Adriatic cannot be ascribed to

the steric component, reinforcing the hypothesis advanced in

Section 3.2.1 regarding the decrease in the intake of AW masses

during the cyclonic phases. Thus, in 2010, as well as for 1997 and

2006 (Figures 4, 5B), for the Adriatic, the significant inflections may

have been mainly driven by the non-steric effects as a consequence

of the differential contribution of AW masses during NIG shifts.

3.2.4 The 2016 inflection
The 2016 inflection, in contrast to the others previously

analyzed, does not provide the same defined pattern throughout

the Mediterranean Sea (Figure 4). Instead, it provides a patchy
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pattern linked to local gyres and complexities at the sub-basin scale

and information about a significant positive inflection in the

westernmost portion of the WMed. Despite this detected

inflection being close to the subsequent NIG reversal (from

cyclonic to anticyclonic), which occurred around 2017 (von

Schuckmann et al., 2019), another significant shift (also in this

case from cyclonic to anticyclonic) occurred in 2012, probably

linked to the extremely cold winter that affected the Adriatic during

the same year (Bensi et al., 2013; Mihanović et al., 2013; Gačić et al.,

2014), but quickly restored to cyclonic conditions in 2013. This brief

reversal episode may have influenced the sea level and the

formation of the breathing oscillation, as observed previously.

However, further analyses with different time-resolution datasets

are required to prove this hypothesis. Furthermore, it should be

considered that, in this case, the upper limit of the split series is the

end of the time series themselves; therefore, to properly evaluate the

effect of the 2016 change point (likely related to the last NIG

reversal), it would require considering the entire time interval until

the next shift.

At the Mediterranean Sea scale, the 2016 inflection provides an

average value of 0 mm/yr, which contrasts with the steric

component that is ca. -5.6 mm/yr, of which about 52% is

explained by the halosteric effect. This suggests that the impact of

the halosteric effect has been further amplified, and that the non-

steric elements have positively contributed by approximately 5.6

mm/yr to balance the total sea level budget, as observed in the 2006

inflection. Moreover, similarities with the 2006 inflection can also

be observed in the thermosteric and halosteric effects, especially in

the EMed (Figure 4).

The significant inflection observed in the Western

Mediterranean in 2016 for altimetry (Figure 4) represents the

only change point observed in the total sea level throughout the

WMed over the period under analysis (Figure 5I), possibly driven

by the steric component and, in detail, by the thermosteric effect.

This phenomenon can also be linked to the WMT footprint, as

suggested by Schroeder et al. (2016) and Naranjo et al. (2017), with

a strong acceleration in temperature and salinity trends after 2013

(consistent with the observation in Figure 5I), driven by the

Western Mediterranean deep-water formation and flowing out of

the Gibraltar Strait.

4 Summary and conclusions

When considering linear modeling, the distribution of sea-level

trends across the entire Mediterranean basin (Figure 3A) shows a

large spatial variability since 1993, consistent with previous studies

(Bonaduce et al., 2016; Mohamed et al., 2019a). Zones of non-

significance in the total sea level trend from altimetry (Figure 3A)

reflect areas of critical passages of different water masses with

related complex circulation at surface and intermediate depths, as

in the case of the EAG-Balearic Islands sector, Southern Central

Mediterranean, and Southern Crete. Also, the Ionian lacked a

significant trend over the whole period; however, it becomes

significant when analyzed only since 1997 (as previously observed

by Vera et al., 2009), thus the lack of significance in the long-term

trend is caused by the abrupt change point within the time series

(Figure 5D). Conversely, the lack of significance in the Southern

Crete (Figures 3A, 5G) is not due to inflections of opposite signs,

which may affect the long-term trend, but this sub-basin is linked to

a substantial absence of a trend. This also probably reflects

regionalization, as Southern Crete comprehends the Cretan

Passage and the IG, which strongly influences sea level. However,

a large positive trend before 1997 characterizes all the time series

within the sub-basin, denoting a different behavior for 1997–2019.

This could be linked to the final phase of the EMT and the

restoration of thermohaline cell circulation of the EMed in 1999

(Manca et al., 2003), with the consequent restitution of the pre-

EMT situation (Vigo et al., 2005). As for the Southern Crete, the

absence of trend in the western WMed is probably linked to the

complexity of the area, with incoming AW and outflowing LIW

waters heavily impacting sea level.

The steric component, contrary to the global mean sea-level

change (Storto et al., 2019), generally slightly affect the total long-

term sea-level trend (Figure 3B) in the Mediterranean Sea, which is

dominated by the contribution of the non-steric effects explaining

approximately 80% of the total variance, consistent with previous

studies (Calafat et al., 2010; Calafat et al., 2012; Pinardi et al., 2014).

However, at the sub-basin scale, the steric component can explain a

substantial part of the total sea-level variance, for instance in the

Aegean (68%), Southern Central Mediterranean (48%), and

Levantine (42%), consistent with Mohamed and Skliris (2022).

Regarding long-term trends, the steric component in the other

sub-basins proved to be non-significant (Figures 3B, 5), as well as

the halosteric component in the Aegean (Figures 3D, 5C), which is

linked to the progressive presence of significant inflections with

opposite signs along the time series, resulting in an irregular

oscillation around zero through time. Furthermore, the weak

contribution of the steric component to the total sea level is

linked to the opposite evolution of the thermosteric (water

expansion owing to increasing ocean temperature) and halosteric

(water contraction owing to increasing salinity) effects (Figures 3C,

D), which cancel each other out in almost all sub-basins.

Four main change points in the total sea-level trend arose from

our analysis over 1993–2019 (Figure 2B), occurring around 1997,

2006, 2010, and 2016. These matched perfectly with the occurrence

of NIG reversal episodes in the Ionian (von Schuckmann et al.,

2019; Menna et al., 2022), where the surface circulation switched

from anticyclonic to cyclonic (1997 and 2011) and vice-versa (2006

and 2017). These changes strongly impacted the water mass

redistribution and thermohaline circulation throughout the EMed

(Vigo et al., 2005; Gačić et al., 2010), thus affecting the sea level and

generating a significant inflection in trends, as previously observed

in 1998 (Vera et al., 2009). Generally, all sub-basins within the

EMed move up and down in phases (Figure 4), leading to a

breathing oscillation (Vigo et al., 2005), where the Ionian behaves

the opposite way to the other sub-basins. This behavior can also be

observed for the steric component, similar to the total sea level

inflections. Accordingly, variations in the steric component seem to

be the main cause of breathing oscillations observed in the total sea

level, thus driving this variability at the sub-basin and

Mediterranean Sea scales which emerge from quasi-decadal trend
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changes. This is also supported by the 2016 inflection observations,

where the bimodal breathing oscillation was not detected in the

steric component, and therefore not in the total sea level. However,

this inflection cannot be accurately assessed, both because the time

series end in December 2019 and because a brief NIG shift that

occurred around 2012 could have influenced the evolution of

the phenomenon.

The contribution of the steric and non-steric components to the

total sea level inflections change over time at the Mediterranean Sea

scale. For example, in 1997, a negative inflection of -6.9 and -6.7

mm/yr was observed for the total sea level and steric component,

respectively, then in 2006, positive inflections of 11 (total) and 5.5

(steric) mm/yr, whereas in 2010 negative inflections again of

approximately -8.9 (total) and -1.6 (steric) mm/yr were observed.

Unlike the previous events, the steric and non-steric effects in 2016

were found to contribute with opposing signs, with the steric

component exhibiting a negative inflection of approximately -5.6

mm/yr and the non-steric component contributing positively (5.6

mm/yr) to the total sea level (as observed for the same type of NIG

reversal in 2006). Some changes within the steric component

properties were also observed for each reversal episode, with the

thermosteric (halosteric) effect explaining approximately 97% (3%)

of the steric variability in 1997, 69% (31%) in 2006, 68% (32%) in

2010, and 48% (52%) in 2016. Finally, the peak-to-peak amplitude

of each breathing oscillation is consistent with each NIG reversal

(ca. 9-10 cm), at least over the altimetric era, for the total sea level

and steric component.

The residual contribution attributed to the non-steric effects

increased over time, from approximately 2% in 1997 to 50% in

2006, 80% in 2010, and again 50% in 2016. Furthermore, the

contribution of the halosteric effect has increased over time,

balancing out the thermosteric contribution; this could have had

an impact on the contribution of the steric component over time, as

the contrast between thermosteric and halosteric effects gradually

led to a cancellation of the steric variability. The 1997 inflection was

strongly influenced by the steric and thermosteric effects, while a

singular behavior can be observed in the EMed time series for this

period (Figure 5). Therefore, it is possible that the concurrent effect

of NIG reversal and EMT relaxation, which occurred around 1997,

is the cause of the divergence of 1997 inflection and the subsequent

inflections. However, EMT (as well as WMT) might be a non-

recurrent phenomenon occurring at time scales longer than the

decadal (Gačić et al., 2013; Roether et al., 2014), in contrast to NIG

reversal episodes that appear to be cyclical at a quasi-decadal time

scale (Gačić et al., 2010). The stronger contribution of the non-steric

effects observed in 2010, instead, may be linked to an anomalously

low NAO index that, in the winter of 2010, led to an average

increase in the Mediterranean sea level of about 12 cm (Tsimplis

et al., 2013). The extent of the phenomenon, however, was found to

be variable among the sub-basins (see Bonaduce et al., 2016).

The individual thermosteric and halosteric effects allow the

observation of the main variability occurring at the sub-basin scale,

the main driver that modifies the steric component. Each breathing

oscillation underlies variations in thermohaline properties and water

mass redistribution at the sub-basin scale over the EMed owing toNIG

reversal episodes. Switches to cyclonic NIG phases (1997, 2011) led to

relative freshening and cooling of Levantine water while shifting to an

anticyclonic phase (2006 and 2017) to salinization and warming,

thereby impacting LIW properties in both cases. Changes in LIW

properties are then reflected throughout the EMed sub-basins by

flowing westward and changing the thermohaline properties of the

intermediate depth layer. The thermosteric effect seems to be the main

driver of the Levantine and Aegean steric variability. In contrast, the

halosteric effect in the Adriatic and Southern Central Mediterranean

contributes similarly to the steric variability of the Ionian, albeit

influencing different portions of the sub-basin. The simultaneous

opposite changes in both effects in some inflections led to

annulment; thus, no significant steric inflections were generated in

these cases. However, the steric inflection in the Adriatic, usually

limited to the SAG area, cannot explain the significant inflections

achieved from altimetry over the whole sub-basin. This suggests that

the water mass redistribution, linked to the NIG, could be the

dominant driver for this sub-basin, in which sea-level trends

increase (decrease) during cyclonic (anticyclonic) phases due to the

intake (lack) of AW flowing directly from the Sicily Channel.

The only significant inflection observed for total sea level in

2016 arose in the Western Mediterranean (Figure 5I), specifically in

the EAG-Balearic Islands (Figure 4), where a positive jump was

observed in altimetry, steric, and thermosteric trends. This variation

is limited to the WMed and is probably linked to the WMT

footprint, as it also occurred around 2004 over the same sub-

basins (namely the Tyrrhenian and the Western Mediterranean).

This study highlights how non-linearity of sea-level trends

within the Mediterranean Sea occurs due to oceanographic

processes at the sub-basin scale, which is also reflected at the

basin scale. Critical dynamic effects such as the NIG reversal

phenomenon in the Ionian, which occurs at a quasi-decadal

cyclicity, significantly affect the sea-level trends, especially in the

EMed. This suggests that for the Mediterranean Sea, sea-level time

series should be analyzed carefully, paying attention to both

regionalization and to the fact that the processes acting in a given

location reflect a chain of changes that have taken place elsewhere.

Furthermore, sea-level projections in the Mediterranean Sea should

take into account the existence of this non-linearity, which acts

differentially between the sub-basins and significantly impacts the

trend in the short and medium term. Future works should look

further into the non-steric effects, in order to better understand

which, and if, other processes could play an important role in

driving the sea-level trend changes. Additionally, inflections on the

steric component could also be evaluated separately for the surface

and intermediate depths, thus better attributing sea-level trend

changes to a specific process at the sub-basin scale.
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Rubino, A. (2019). Decadal variations of circulation in the central Mediterranean and
its interactions with the mesoscale gyres.Deep Sea Res. Part II Top. Stud. Oceanogr. 164,
14–24. doi: 10.1016/j.dsr2.2019.02.004
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Martıńez, M. C., et al. (2012). Effects of the Western Mediterranean transition on the
resident water masses: Pure warming, pure freshening and pure heaving. J. Mar. Syst.
96-96, 15–23. doi: 10.1016/j.jmarsys.2012.01.011

Meli et al. 10.3389/fmars.2023.1150488

Frontiers in Marine Science frontiersin.org18



4 Conclusions and Outlook

This thesis offers a multidisciplinary contribution to the understanding of sea–level

change at different spatiotemporal scales. In particular, it focused on variations in RSL

at the coastal scale, how natural and anthropogenic footprints impacted catchment areas,

thus the riverine sediment supply to the coast, and on the main variability of geocentric

sea level, and related steric component, at the regional scale. To reach this goal, the

project concentrated on three different spatiotemporal perspectives, from the Emilia–

Romagna coast (Section 3.1), up to the Reno and Lamone river basins (Section 3.2), and

the Mediterranean Sea (Section 3.3).

The first step involved the local RSL assessment at the scale of the Emilia–Romagna

coast during the period 1993–2019, to quantify the long–term linear rate and the differ-

ential control induced by subsidence along the coast (Meli et al., 2021). The analysis

provided an answer to the research question: How sea level has changed at the Emilia–

Romagna coastal scale as resulting from different observative approaches? Despite the

short overlap between SA time series and data provided by three local TGs, a generalized

high correlation coefficient arise among RSL and ASL time series, with lower correspon-

dences mostly associated to the effect of local VLM. Data from altimetry showed that

the ASL is coherent along the coast over the satellite altimetry era, providing a linear

rate of 2.8 ± 0.5 mm·year−1 and a negative acceleration of -0.3 ± 0.1 mm·year−2. The

former is smaller but comparable with the GMSL average for the same time frame (3.3

± 0.5 mm·year−1), while the latter contrasts with the ongoing, albeit debated, positive

GMSL acceleration (0.084 ± 0.025 mm·year−2, according to Nerem et al. (2018)). The

found negative acceleration could be the consequence of local scale and short–lived phe-

nomena, climatological events, or multidecadal oscillations, only partially sampled by the

available data. Our interpretation puts this phenomenon in the broader context of the

Mediterranean Sea in which a marked spatiotemporal variability of sea–level trend has

been observed. The non–linearity of local sea–level trend could be also confirmed by the

presence of different, significant periodicities within the signal.

The second step of this research focused on the climatic and hydrological processes

that have affected the Lamone and Reno river basins of the ER Region and the related
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coastal area over the last century (Meli and Romagnoli, 2022). The holistic approach

considered for the analysis took into account different climatic and environmental pa-

rameters, providing an answer to the research question: How natural and anthropogenic

footprints impacted dynamics of the catchment areas and, indirectly, the coast? The large–

scale anthropogenic dimming/brightening phenomenon (Wild et al., 2005; Wild, 2009),

that act at both the global–to–regional and river basin scale, and local land–use changes

turned out to be the main drivers of the observed long–term, non–linear trends within

the catchment area. However, the influence of natural oscillations, despite of secondary

importance, still have an impact on all environmental and climatic parameters considered.

Indeed, interactions with major climatic modes (e.g., NAO and AMO) can significantly

modify the signals over various periodicities. A substantial negative acceleration in river

discharge supports a lack of recovery in terms of sediment delivery to the coast, despite

safeguard policies introduced by the ER regional administration in the early 1980s. The

drastic reduction in river discharge and sediment supply was driven first by river regu-

lation and land–use changes, mainly from 1950s to 1980s, then, since the 1980s, by the

dramatic local air temperature rise, resulting in protracted drought conditions. Further-

more, over the last 140 years, the small coastal portion under consideration (Figure 7,

Section 2.2) has been influenced by persistent sea–level rise (1.3 ± 0.2 mm·year−1), pe-

riodically reduced or amplified by natural fluctuations at high–frequency (e.g., observed

in 2010) and low–frequency (observed in the early twentieth century, 1970s–1980s, and

1990s to mid–2000s) fluctuations.

At last, the third step of this project aimed at shedding light on the main variability

of sea–level trends across the Mediterranean Sea (Meli et al., 2023). The related scientific

question, i.e. What is the main variability of sea–level trends in the Mediterranean Sea?,

has been answered. A statistical analysis performed on the total sea level observed from

altimetry provided an indication of four main changes occurred in sea–level trends during

the satellite era (1993–2019). These have been detected around 1997, 2006, 2010 and 2016.

These change points appear to have occurred in correspondence with the quasi–decadal

Ionian surface circulation reversal episodes (Gačić et al., 2013; Menna et al., 2019), thus

suggesting that observed changes in sea–level trends are directly driven by modification of
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thermohaline circulation and mass redistribution. This process mostly impacts the whole

Eastern Mediterranean Sea (i.e., excluding the Western Mediterranean and Tyrrhenian

sub–basins, Figure 9), leading to a sort of breathing oscillation mode (Vigo et al., 2005)

with the sub–basins moving up and down in phase. In detail, a switch from anticyclonic

to cyclonic (and vice versa) mode in the northern Ionian circulation led to a significant

positive (negative) change of sea–level trend throughout the Ionian Sea, while a concurrent

negative (positive) variation is observed for all other sub–basins. The same behavior is

observed also for the steric component but with different magnitude in time with respect

to the total sea level; this suggests that only part of these changes in sea–level trends can

be explained as a consequence of the steric variability, and that non–steric effects (e.g.,

the mass component) always gave their contribute.

Some aspects related to the main question of this work (Which is the sea–level

variability for the Emilia–Romagna coastal area in the framework of the

Mediterranean Sea?) have been originally addressed, leading to a better compre-

hension of different processes and their interaction. ASL along the ER has risen with

a rate of 2.8 ± 0.5 mm·year−1 and 1.3 ± 0.2 mm·year−1 over the periods 1993–2019

and 1875–2016, respectively. However, significant non–linearities influenced the signal at

different frequencies. These are probably driven, at both the inter–annual and multi–

decadal time scales, by coupled atmosphere-ocean interactions, also occurring outside the

Mediterranean basin, mainly linked to the influence of the NAO (see Manuscript I and

II), while, at the quasi–decadal time scale, by changes in the surface circulation of the

nearby Ionian sub–basin (see Manuscript III). The main differences that arise between

the ASL and RSL at the coastal scale are inevitably linked to the influence of VLMs,

of both natural and anthropogenic origin, that differentially contribute at any location.

According to the existing literature (ARPA, 2002; Preti et al., 2008; Aguzzi et al., 2016,

2020), the subsidence trend of the whole coastal plain has generally decreased over the

last two decades; however, this study highlighted the fact that local VLMs may differ

from the general trend, and therefore there is the need to assess RSL case by case.

This study also provided information about one of the major contributor to the

shoreline evolution in terms of erosion/accretion, although not considered in the sea–
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level equation, represented by the riverine sediment supply to the coast (see Manuscript

II). Analysis on catchment dynamics showed that the anthropogenic influence over the

last century, acting at different spatial scale for different processes, drove the long–term

changes of several parameters. This partly explains the lack of recovery in the sediment

supply, despite the introduction of safeguard policies in the early 1980s by the ER regional

administration.

Answering to the sub–questions and the related analyses, nevertheless, opens new

questions, as new evidences emerged. Future works should provide coastal plain VLMs at

high resolution and their non–linear components. This would lead to more accurate local

RSL estimates and a widespread view of the extent of the anthropogenic impact. In terms

of sea–level projections at the local scale, there is the need to better clarify the origin of

the non–linear, multi–decadal oscillations observed in local ASL over the last 140 years,

since failure to consider these would lead to unreliable future estimates. Furthermore, it

is necessary to better understand the influence of quasi–decadal oceanographic changes

on sea level at the sub–basin scale, quantifying the differential impact of all sea–level

components over time. The absence of this consideration could lead to critical issues in

terms of studying sea–level projections in the near–term for the Mediterranean Sea, and

might be essential when testing the validity of projections computed from regional or

global models that may not be able to capture this type of local, sub–basinal variability.
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