180 research outputs found
Molecular Magnetic Materials on Solid Surfaces
This PhD thesis summarises a study of the nanostructuration of single molecule magnets and organic radicals on metallic surfaces, carried out by the author in collaboration with a number of research groups in Italy, France, Germany and Israel. A tailored approach was followed to graft individual molecules to the surface, to characterise the morphology of the functionalised surfaces with standard scanning probe microscopy and to investigate their magnetic properties using X-Ray circular dichroism. The aim of this project was to develop the initial basis for the organisation and addressing of magnetic molecules with a view to the development of single molecule devices for data storage and molecular-spintronic applications
Patterned monolayers of nitronyl nitroxide radicals
We report here the results of the preliminary characterization of the monolayer obtained both by self-assembling and microcontact printing of a di-alkyl sulfide nitronyl nitroxide derivative, 11-decyl sulfanyl-undecanyl nitronyl nitroxide of which we describe the synthesis. The sulfide unit has been introduced in order to allow the grafting of the molecule to the gold surface as well as to improve the stability of the organic radical with respect to different grafting agents like thiols, whereas the two long alkyl chains have been introduced to enhance the packing order of the molecules in a self assembled monolayer structure. X-band ESR was used to demonstrate the persistence of the paramagnetic character of the radical in the self-assembled monolayers, and to study its relatively large mobility. The microcontact printed monolayer was characterized by AFM, suggesting a non-negligible mobility of the molecules on the surfaces and a strong tilting of the molecules on the surface
Spin fluctuations in the light-induced high spin state of Cobalt valence tautomers
We present a study of the static magnetic properties and spin dynamics in
Cobalt valence tautomers (VT), molecules where a low-spin (LS) to high-spin
(HS) crossover driven by an intramolecular electron transfer can be controlled
by the temperature, by the external pressure or by light irradiation. In the
investigated complex, a LS-Co(III) ion bound to a dinegative organic ligand can
be reversibly converted into the HS-Co(II) bound to a mononegative one. By
combining magnetization measurements with Nuclear Magnetic Resonance (NMR) and
Muon Spin Relaxation ({\mu}SR), we have investigated the static magnetic
properties and the spin dynamics as a function of the temperature. Moreover,
the effect of the external pressure as well as of the infrared light
irradiation have been explored through magnetometry and NMR measurements to
determine the spin dynamics of the HS state. The photoinduced HS state, which
can have a lifetime of several hours below 30 K, is characterized by spin
dynamics in the MHz range, which persist at least down to 10 K. The application
of an external pressure causes a progressive increase of the LS-HS crossover,
which reaches room temperature for pressures around 10 kbar
Chirality-Induced Spin Selectivity: An Enabling Technology for Quantum Applications
Molecular spins are promising building blocks of future quantum technologies thanks to the unparalleled flexibility provided by chemistry, which allows the design of complex structures targeted for specific applications. However, their weak interaction with external stimuli makes it difficult to access their state at the single-molecule level, a fundamental tool for their use, for example, in quantum computing and sensing. Here, an innovative solution exploiting the interplay between chirality and magnetism using the chirality-induced spin selectivity effect on electron transfer processes is foreseen. It is envisioned to use a spin-to-charge conversion mechanism that can be realized by connecting a molecular spin qubit to a dyad where an electron donor and an electron acceptor are linked by a chiral bridge. By numerical simulations based on realistic parameters, it is shown that the chirality-induced spin selectivity effect could enable initialization, manipulation, and single-spin readout of molecular qubits and qudits even at relatively high temperatures
M\uf6ssbauer spectroscopy of a monolayer of single molecule magnets
The use of single molecule magnets (SMMs) as cornerstone elements in spintronics and quantum computing applications demands that magnetic bistability is retained when molecules are interfaced with solid conducting surfaces. Here, we employ synchrotron M\uf6ssbauer spectroscopy to investigate a monolayer of a tetrairon(III) (Fe4) SMM chemically grafted on a gold substrate. At low temperature and zero magnetic field, we observe the magnetic pattern of the Fe4 molecule, indicating slow spin fluctuations compared to the M\uf6ssbauer timescale. Significant structural deformations of the magnetic core, induced by the interaction with the substrate, as predicted by ab initio molecular dynamics, are also observed. However, the effects of the modifications occurring at the individual iron sites partially compensate each other, so that slow magnetic relaxation is retained on the surface. Interestingly, these deformations escaped detection by conventional synchrotron-based techniques, like X-ray magnetic circular dichroism, thus highlighting the power of synchrotron M\uf6ssbauer spectroscopy for the investigation of hybrid interfaces
Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope
Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM\u2019s properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule\u2019s magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface
UHV Deposition and Characterization of a Mononuclear Iron(III) \u3b2-diketonate Complex on Au(111)
The adsorption of the sterically hindered \u3b2-diketonate complex Fe(dpm)3, where Hdpm = dipivaloylmethane, on Au(111) was investigated by ultraviolet photoelectron spectroscopy (UPS) and scanning tunnelling microscopy (STM). The high volatility of the molecule limited the growth of the film to a few monolayers. While UPS evidenced the presence of the \u3b2-diketonate ligands on the surface, the integrity of the molecule on the surface could not be assessed. The low temperature STM images were more informative and at submonolayer coverage they showed the presence of regular domains characterized by a flat morphology and height of 480.3 nm. Along with these domains, tetra-lobed features adsorbed on the kinks of the herringbone were also observed. DFT-simulated images of the pristine molecule and its possible decomposition products allowed to assess the partial fragmentation of Fe(dpm)3 upon adsorption on the Au(111) surface. Structural features with intact molecules were only observed for the saturation coverage. An ex situ prepared thick film of the complex was also investigated by X-ray magnetic circular dichroism (XMCD) and features typical of high-spin iron(III) in octahedral environment were observed
- …