28 research outputs found

    IMMU-01. TEM-GBM: AN OPEN-LABEL, PHASE I/IIA DOSE-ESCALATION STUDY EVALUATING THE SAFETY AND EFFICACY OF GENETICALLY MODIFIED TIE-2 EXPRESSING MONOCYTES TO DELIVER IFN-A WITHIN GLIOBLASTOMA TUMOR MICROENVIRONMENT

    Get PDF
    Abstract Temferon is a macrophage-based treatment relying on ex-vivo transduction of autologous HSPCs to express immune-payloads within the TME. Temferon targets the immune-modulatory molecule IFN-a, to a subset of tumor infiltrating macrophages known as Tie-2 expressing macrophages (TEMs) due to the Tie2 promoter and a post-transcriptional regulation layer represented by miRNA-126 target sequences. As of 31st May 2021, 15-patients received Temferon (D+0) with follow-up of 3 – 693 days. After conditioning neutrophil and platelet engraftment occurred at D+13 and D+13.5, respectively. Temferon-derived differentiated cells, as determined be the number of vector copy per genome, were found within 14 days post treatment and persisted albeit at lower levels up to 18-months. Very low concentrations of IFN-a in the plasma (8.7 pg/ml-D+30) and in the CSF (1.6 pg/ml-D+30) were detected, suggesting tight regulation of transgene expression. Five-deaths occurred at D+322, +340, +402, +478 and +646 due to PD, and one at D+60 due to complications following the conditioning regimen. Eight-patients had progressive disease (range: D-11 to +239) as expected for this tumor type. SAEs include GGT elevation (possibly related to Temferon) and infections, venous thromboembolism, brain abscess, hemiparesis, seizures, anemia and general physical condition deterioration, compatible with ASCT, concomitant medications and PD. Four-patients underwent 2ndsurgery. Recurrent tumors had gene-marked cells and increased expression of ISGs compared to first surgery, indicative of local IFNa release by TEMs. In one patient, a stable lesion had a higher proportion of T cells and TEMs within the myeloid infiltrate and an increased ISGs than in the progressing lesion, detected in the same patient. Tumor-associated clones expanded in the periphery. TME characterization by scRNA and TCR-sequencing is ongoing. To date, Temferon is well tolerated, with no DLTs identified. The results provide initial evidence of Temferon potential to activate the immune system of GBM patients, as predicted by preclinical studies

    Spontaneous remission of choroidal involvement by chronic myelomonocytic leukemia: a case report

    Get PDF
    Chronic myelomonocytic leukemia (CMML) is a rare hematological disorder characterized by variable risk of evolution to acute myeloid leukemia; to date, allogeneic stem cell transplantation is the only curative treatment. We report a case of choroidal involvement in a woman affected by CMML and presenting only with visual impairment. The patient was initially evaluated for an intensive therapeutic approach, but after biopsy the ocular lesion spontaneously regressed. Thus a “watch and wait” strategy was preferred. One year and a half after initial diagnosis, the patient is alive, with stable hematological disease and without any ocular involvement. Therefore, a close, not invasive follow up could be useful to tailor treatment for patients affected by single ocular lesions in CMML

    Integrating a prospective pilot trial and patient-derived xenografts to trace metabolic changes associated with acute myeloid leukemia

    Get PDF
    Abstract Despite the considerable progress in understanding the molecular bases of acute myeloid leukemia (AML), new tools to link disease biology to the unpredictable patient clinical course are still needed. Herein, high-throughput metabolomics, combined with the other “-omics” disciplines, holds promise in identifying disease-specific and clinically relevant features. In this study, we took advantage of nuclear magnetic resonance (NMR) to trace AML-associated metabolic trajectory employing two complementary strategies. On the one hand, we performed a prospective observational clinical trial to identify metabolic changes associated with blast clearance during the first two cycles of intensive chemotherapy in nine adult patients. On the other hand, to reduce the intrinsic variability associated with human samples and AML genetic heterogeneity, we analyzed the metabolic changes in the plasma of immunocompromised mice upon engraftment of primary human AML blasts. Combining the two longitudinal approaches, we narrowed our screen to seven common metabolites, for which we observed a mirror-like trajectory in mice and humans, tracing AML progression and remission, respectively. We interpreted this set of metabolites as a dynamic fingerprint of AML evolution. Overall, these NMR-based metabolomic data, to be consolidated in larger cohorts and integrated in more comprehensive system biology approaches, hold promise for providing valuable and non-redundant information on the systemic effects of leukemia

    Reduced intensity stem cell transplantation for advanced soft tissue sarcomas in adults: a retrospective analysis of the European Group for Blood and Marrow Transplantation

    No full text
    We conducted a retrospective analysis on adult patients with advanced soft tissue sarcoma (STS) other than rhabdomyosarcoma who received allogeneic stem cell transplantation and were registered at the EBMT database. The aim of of the study was to assess whether an immune-mediated graft-versus-tumor (GVT) effect could be generated in this disease. Among 26 patients included in the registry, 14 were eligible for this analysis as they had received reduced intensity stem cell transplantation for chemorefractory disease. Two patients died of transplant-related complications and eight of progressive disease; four are alive and experienced long-lasting disease stabilisation following transplant. Our study may suggest that an immune-mediated effect cannot be excluded in some STS

    Epicardial and Pericoronary Adipose Tissue, Coronary Inflammation, and Acute Coronary Syndromes

    No full text
    Vascular inflammation is recognized as the primary trigger of acute coronary syndrome (ACS). However, current noninvasive methods are not capable of accurately detecting coronary inflammation. Epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT), in addition to their role as an energy reserve system, have been found to contribute to the development and progression of coronary artery calcification, inflammation, and plaque vulnerability. They also participate in the vascular response during ischemia, sympathetic stimuli, and arrhythmia. As a result, the evaluation of EAT and PCAT using imaging techniques such as computed tomography (CT), cardiac magnetic resonance (CMR), and nuclear imaging has gained significant attention. PCAT-CT attenuation, which measures the average CT attenuation in Hounsfield units (HU) of the adipose tissue, reflects adipocyte differentiation/size and leukocyte infiltration. It is emerging as a marker of tissue inflammation and has shown prognostic value in coronary artery disease (CAD), being associated with plaque development, vulnerability, and rupture. In patients with acute myocardial infarction (AMI), an inflammatory pericoronary microenvironment promoted by dysfunctional EAT/PCAT has been demonstrated, and more recently, it has been associated with plaque rupture in non-ST-segment elevation myocardial infarction (NSTEMI). Endothelial dysfunction, known for its detrimental effects on coronary vessels and its association with plaque progression, is bidirectionally linked to PCAT. PCAT modulates the secretory profile of endothelial cells in response to inflammation and also plays a crucial role in regulating vascular tone in the coronary district. Consequently, dysregulated PCAT has been hypothesized to contribute to type 2 myocardial infarction with non-obstructive coronary arteries (MINOCA) and coronary vasculitis. Recently, quantitative measures of EAT derived from coronary CT angiography (CCTA) have been included in artificial intelligence (AI) models for cardiovascular risk stratification. These models have shown incremental utility in predicting major adverse cardiovascular events (MACEs) compared to plaque characteristics alone. Therefore, the analysis of PCAT and EAT, particularly through PCAT-CT attenuation, appears to be a safe, valuable, and sufficiently specific noninvasive method for accurately identifying coronary inflammation and subsequent high-risk plaque. These findings are supported by biopsy and in vivo evidence. Although speculative, these pieces of evidence open the door for a fascinating new strategy in cardiovascular risk stratification. The incorporation of PCAT and EAT analysis, mainly through PCAT-CT attenuation, could potentially lead to improved risk stratification and guide early targeted primary prevention and intensive secondary prevention in patients at higher risk of cardiac events
    corecore