3,609 research outputs found

    Ouabain-induced cytoplasmic vesicles and their role in cell volume maintenance

    Get PDF
    Cellular swelling is controlled by an active mechanism of cell volume regulation driven by a Na+/K+-dependent ATPase and by aquaporins which translocate water along the osmotic gradient. Na+/K+-pump may be blocked by ouabain, a digitalic derivative, by inhibition of ATP, or by drastic ion alterations of extracellular fluid. However, it has been observed that some tissues are still able to control their volume despite the presence of ouabain, suggesting the existence of other mechanisms of cell volume control. In 1977, by correlating electron microscopy observation with ion and water composition of liver slices incubated in differentmetabolic conditions in the presence or absence of ouabain, we observed that hepatocytes were able to control their volume extruding water and recovering ion composition in the presence of ouabain. In particular, hepatocytes were able to sequester ions and water in intracellular vesicles and then secrete themat the bile canaliculus pole.We named this “vesicularmechanismof cell volume control.” Afterward, thismechanism has been confirmed by us and other laboratories in several mammalian tissues.This review summarizes evidences regarding this mechanism, problems that are still pending, and questions that need to be answered. Finally, we shortly review the importance of cell volume control in some human pathological conditions

    A note on the fate of the Landau-Yang theorem in non-Abelian gauge theories

    Get PDF
    Using elementary considerations of Lorentz invariance, Bose symmetry and BRST invariance, we argue why the decay of a massive color-octet vector state into a pair of on-shell massless gluons is possible in a non-Abelian SU(N) Yang-Mills theory, we constrain the form of the amplitude of the process and offer a simple understanding of these results in terms of effective-action operators.Comment: 7 pages. v2: typos corrected, one reference adde

    The ACS LCID project. IX. Imprints of the early Universe in the radial variation of the star formation history of dwarf galaxies

    Full text link
    Based on Hubble Space Telescope observations from the Local Cosmology from Isolated Dwarfs project, we present the star formation histories, as a function of galactocentric radius, of four isolated Local Group dwarf galaxies: two dSph galaxies, Cetus and Tucana, and two transition galaxies (dTrs), LGS-3 and Phoenix. The oldest stellar populations of the dSphs and dTrs are, within the uncertainties, coeval (∌13Gyr\sim 13 Gyr) at all galactocentric radii. We find that there are no significative differences between the four galaxies in the fundamental properties (such as the normalized star formation rate or age-metallicity relation) of their outer regions (radii greater than four exponential scale lengths); at large radii, these galaxies consist exclusively of old (≄10.5Gyr\geq 10.5 Gyr) metal-poor stars. The duration of star formation in the inner regions vary from galaxy to galaxy, and the extended central star formation in the dTrs produces the dichotomy between dSph and dTr galaxy types. The dTr galaxies show prominent radial stellar population gradients: the centers of these galaxies host young (≀1Gyr\leq 1 Gyr) populations while the age of the last formation event increases smoothly with increasing radius. This contrasts with the two dSph galaxies. Tucana shows a similar, but milder, gradient, but no gradient in age is detected Cetus. For the three galaxies with significant stellar population gradients, the exponential scale length decreases with time. These results are in agreement with outside-in scenarios of dwarf galaxy evolution, in which a quenching of the star formation toward the center occurs as the galaxy runs out of gas in the outskirts.Comment: Accepted to be published in Ap

    SoftHand at the CYBATHLON: A user's experience

    Get PDF
    Background: Roughly one-quarter of upper limb prosthesis users reject their prosthesis. Reasons for rejection range from comfort, to cost, aesthetics, function, and more. This paper follows a single user from training with and testing of a novel upper-limb myoelectric prosthesis (the SoftHand Pro) for participation in the CYBATHLON rehearsal to training for and competing in the CYBATHLON 2016 with a figure-of-nine harness controlled powered prosthesis (SoftHand Pro-H) to explore the feasibility and usability of a flexible anthropomorphic prosthetic hand. Methods: The CYBATHLON pilot took part in multiple in-lab training sessions with the SoftHand Pro and SoftHand Pro-H; these sessions focused on basic control and use of the prosthetic devices and direct training of the tasks in the CYBATHLON. He used these devices in competition in the Powered Arm Prosthesis Race in the CYBATHLON rehearsal and 2016 events. Results: In training for the CYBATHLON rehearsal, the subject was able to quickly improve performance with the myoelectric SHP despite typically using a body-powered prosthetic hook. The subject improved further with additional training using the figure-of-nine harness-controlled SHPH in preparation for the CYBATHLON. The Pilot placed 3rd (out of 4) in the rehearsal. In the CYBATHLON, he placed 5th (out of 12) and was one of only two pilots who successfully completed all tasks in the competition, having the second-highest score overall. Conclusions: Results with the SoftHand Pro and Pro-H suggest it to be a viable alternative to existing anthropomorphic hands and show that the unique flexibility of the hand is easily learned and exploited

    Stable Control of Pulse Speed in Parametric Three-Wave Solitons

    Get PDF
    We analyze the control of the propagation speed of three wave packets interacting in a medium with quadratic nonlinearity and dispersion. We found analytical expressions for mutually trapped pulses with a common velocity in the form of a three-parameter family of solutions of the three-wave resonant interaction. The stability of these novel parametric solitons is simply related to the value of their common group velocity

    Technological and Economic Optimization of Functional Ready to Eat Meal

    Get PDF
    A ready meal based on precooked gluten-free pasta with a yogurt-based sauce enriched with probiotic bacteria was developed and optimized from both the nutritional and sensory point of view. Conceptually, the work aims at understanding the innovation stress in consumers and check whether the “perfect beauty” of a complex food product innovation, which is extremely admirable from a food technology point of view, could be effectively appreciated by consumers. In other words, we are interested in knowing whether there exists a gap between science-based or ”innovation-leading” technologists’ food preferences and consumers’ preferences, which are taste, information, price and promotion driven

    Characterization of Nonlinear Finger Pad Mechanics for Tactile Rendering

    Get PDF
    The computation of skin forces and deformations for tactile rendering requires an accurate model of the extremely nonlinear behavior of the skin. In this work, we investigate the characterization of finger mechanics with the goal of designing accurate nonlinear models for tactile rendering. First, we describe a measurement setup that enables the acquisition of contact force and contact area in the context of controlled finger indentation experiments. Second, we describe an optimization procedure that estimates the parameters of strain-limiting deformation models that match best the acquired data. We show that the acquisition setup allows the measurement of force and area information with high repeatability, and the estimation method reaches nonlinear models that match the measured data with high accuracy
    • 

    corecore