153 research outputs found

    Front-end Electronics for Timing with pico-seconds precision using 3D Trench Silicon Sensors

    Full text link
    The next generation of experiments at colliders demands detectors with extreme performance in terms of spatial resolution, radiation hardness and timing capabilities. In this sense, pixel sensors with sizes of a few tens of Ī¼m\mu m, timing resolution of tens of pico-seconds and radiation resistance to particle fluences in the range of 1017Ā 1Ā 10^{17}~1~MeV neutron equivalent per cm2^2 are required. 3D silicon sensors, recently developed within the TimeSPOT initiative, appear as a suitable solution to cope with such demanding requirements. In order to accurately characterize the timing performance of this new sensors, several read-out boards, based on discrete active components, have been designed, assembled, and tested. The same electronics is also suitable for the characterization of similar pixel sensors whenever timing performance in the range and below 10-ps is a requirement. This paper describes the general characteristics needed by front-end electronics to exploit solid state sensors with high timing capabilities and in particular illustrates the performance of the developed electronics in the test and characterization of fast 3D silicon sensors

    Growth and instability of a laminar plume in a strongly stratified environment

    Get PDF
    Experimental studies of laminar plumes descending under gravity into stably stratified environments have shown the existence of a critical injection velocity beyond which the plume exhibits a bifurcation to a coiling instability in three dimensions or a sinuous instability in a Hele-Shaw flow. In addition, flow visualization has shown that, prior to the onset of the instability, a stable base flow is established in which the plume penetrates to a depth significantly smaller than the neutral buoyancy depth. Moreover, the fresh water that is viscously entrained by the plume recirculates within a ā€˜conduitā€™ whose boundary with the background stratification appears sharp. Beyond the bifurcation, the buckling plume takes the form of a travelling wave of varying amplitude, confined within the conduit, which disappears at the penetration depth. To determine the mechanisms underlying these complex phenomena, which take place at a strikingly low Reynolds number but a high Schmidt number, we study here a two-dimensional arrangement, as it is perhaps the simplest system which possesses all the key experimental features. Through a combination of numerical and analytical approaches, a scaling law is found for the plumeā€™s penetration depth within the base flow (i.e. the flow where the instability is either absent or artificially suppressed), and the horizontal cross-stream velocity and concentration profile outside the plume are determined from an asymptotic analysis of a simplified model. Direct numerical simulations show that, with increasing flow rate, a sinuous global mode is destabilized giving rise to the self-sustained oscillations as in the experiment. The sinuous instability is shown to be a consequence of the baroclinic generation of vorticity, due to the strong horizontal gradients at the edge of the conduit, a mechanism that is relevant even at very low Reynolds numbers. Despite the strength of this instability, the penetration depth is not significantly affected by it, instead being determined by the properties of the plume in the vicinity of the source. This scenario is confirmed by a local stability analysis. A finite region of local absolute instability is found near the source for sinuous modes prior to the onset of the global instability. Sufficiently far from the source the flow is locally stable. Near the onset of the global instability, varicose modes are also found to be locally, but only convectively, unstable

    Intrinsic timing properties of ideal 3D-trench silicon sensor with fast front-end electronics

    Full text link
    This paper describes the fundamental timing properties of a single-pixel sensor for charged particle detection based on the 3D-trench silicon structure. We derive the results both analytically and numerically by considering a simple ideal sensor and the corresponding fast front-end electronics in two different case scenarios: ideal integrator and real fast electronics (trans-impedance amplifier). The particular shape of the Time of Arrival (TOA) distribution is examined and the relation between the time resolution and the spread of intrinsic charge collection time is discussed, by varying electronics parameters and discrimination thresholds. The results are obtained with and without simulated electronics noise. We show that the 3D-trench sensors are characterized by a synchronousĀ regionsynchronous~region, i.e. a portion of the active volume which leads to the same TOA values when charged particles cross it. The synchronous region size is dependent on the front-end electronics and discrimination threshold, and the phenomenon represents an intrinsic physical effect that leads to the excellent time resolution of these sensors. Moreover, we show that the TOA distribution is characterized by an intrinsic asymmetry, due to the 3D geometry only, that becomes negligible in case of significant electronics jitter

    Electrodynamic friction of a charged particle passing a conducting plate

    Full text link
    The classical electromagnetic friction of a charged particle moving with prescribed constant velocity parallel to a planar imperfectly conducting surface is reinvestigated. As a concrete example, the Drude model is used to describe the conductor. The transverse electric and transverse magnetic contributions have very different character both in the low velocity (nonrelativistic) and high velocity (ultrarelativistic) regimes. Both numerical and analytical results are given. Most remarkably, the transverse magnetic contribution to the friction has a maximum for āˆ£vāˆ£<c|\mathbf{v}|<c, and persists in the limit of vanishing resistivity for sufficiently high velocities. We also show how Vavilov-\v{C}erenkov radiation can be treated in the same formalism.Comment: 13 pages, 7 figures. This is the extensively revised version accepted by Physical Review Researc

    Correlations between chest-CT and laboratory parameters in SARS-CoV-2 pneumonia: A single-center study from Italy

    Get PDF
    To investigate the relationship between damaged lung assessed by chest computed tomography (CT) scan and laboratory biochemical parameters with the aim of finding other diagnostic tools. Patients who underwent chest CT for suspected Corona Virus Disease-2019 (COVID-19) pneumonia at the emergency department admission in the first phase of COVID-19 epidemic in Italy were retrospectively analyzed. Patients with both negative chest CT and absence of the novel coronavirus in nasopharyngeal or oropharyngeal real-time reverse transcriptase polymerase chain reaction (RT-PCR) swabs were excluded from the study. A total of 462 patients with positive CT scans for interstitial pneumonia were included in the study (250 males and 212 females, mean age 57 Ā± 17 years, range 18ā€“89). Of these, 344 were positive to RT-PCR test, 118 were negative to double RT-PCR tests. CTs were analyzed for quantification of affected lung volume visually and by dedicated software. Statistical analysis to evaluate the relationship between laboratory analyses and CT patterns and amount of damaged lung related with COVID-19 pneumonia was performed in 2 groups of patients: positive RT-PCR COVID-19 group and negative RT-PCR COVID-19 group, but both with positive CT scans for interstitial pneumonia. Lymphocytopenia, C-reactive protein (CRP), lactate dehydrogenase (LDH), d-dimer, and fibrinogen increased levels occurred in most patients without statistically significant differences between the 2 groups with CT scans suggestive for COVID-19. In fact, in both groups the volume of lung damage was strongly associated with altered laboratory test results, even for patients with negative RT-PCR test. The decreased number of lymphocytes, and the increased levels of CRP, LDH, d-dimer, and fibrinogen levels are associated with SARS-CoV 2 related pneumonia. This may be useful as an additional diagnostic tool in patients with double negative RT-PCR assay and with highly suspected clinic and chest CT features for COVID-19 to isolate patients in a pandemic period.publishedVersio

    Ren: a novel, developmentally regulated gene that promotes neural cell differentiation

    Get PDF
    Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation
    • ā€¦
    corecore