6 research outputs found

    Symmetries, Holography and Quantum Phase Transition in Two-dimensional Dilaton AdS Gravity

    Full text link
    We present a revisitation of the Almheiri-Polchinski dilaton gravity model from a two-dimensional (2D) bulk perspective. We describe a peculiar feature of the model, namely the pattern of conformal symmetry breaking using bulk Killing vectors, a covariant definition of mass and the flow between different vacua of the theory. We show that the effect of the symmetry breaking is both the generation of an infrared scale (a mass gap) and to make local the Goldstone modes associated with the asymptotic symmetries of the 2D spacetime. In this way a non vanishing central charge is generated in the dual conformal theory, which accounts for the microscopic entropy of the 2D black hole. The use of covariant mass allows to compare energetically the two different vacua of the theory and to show that at zero temperature the vacuum with a constant dilaton is energetically preferred. We also translate in the bulk language several features of the dual CFT discussed by Maldacena et al. The uplifting of the 2D model to (d+2)−(d+2)-dimensional theories exhibiting hyperscaling violation is briefly discussed.Comment: 7 pages, no figure

    Dark Energy from holographic theories with hyperscaling violation

    Get PDF
    We show that analytical continuation maps scalar solitonic solutions of Einstein-scalar gravity, interpolating between an hyperscaling violating and an Anti de Sitter (AdS) region, in flat FLRW cosmological solutions sourced by a scalar field. We generate in this way exact FLRW solutions that can be used to model cosmological evolution driven by dark energy (a quintessence field) and usual matter. In absence of matter, the flow from the hyperscaling violating regime to the conformal AdS fixed point in holographic models corresponds to cosmological evolution from power-law expansion at early cosmic times to a de Sitter (dS) stable fixed point at late times. In presence of matter, we have a scaling regime at early times, followed by an intermediate regime in which dark energy tracks matter. At late times the solution exits the scaling regime with a sharp transition to a dS spacetime. The phase transition between hyperscaling violation and conformal fixed point observed in holographic gravity has a cosmological counterpart in the transition between a scaling era and a dS era dominated by the energy of the vacuum.Comment: 18 pages, 4 figures. V2:Some typo errors and Eq. (3.12) corrected, three references adde

    Elemental fingerprinting combined with machine learning techniques as a powerful tool for geographical discrimination of honeys from nearby regions

    Full text link
    Discrimination of honey based on geographical origin is a common fraudulent practice and is one of the most investigated topics in honey authentication. This research aims to discriminate honeys according to their geographical origin by combining elemental fingerprinting with machine-learning techniques. In particular, the main objective of this study is to distinguish the origin of unifloral and multifloral honeys produced in neighboring regions, such as Sardinia (Italy) and Spain. The elemental compositions of 247 honeys were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The origins of honey were differentiated using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Random Forest (RF). Compared to LDA, RF demonstrated greater stability and better classification performance. The best classification was based on geographical origin, achieving 90% accuracy using Na, Mg, Mn, Sr, Zn, Ce, Nd, Eu, and Tb as predictors

    Elemental Fingerprinting Combined with Machine Learning Techniques as a Powerful Tool for Geographical Discrimination of Honeys from Nearby Regions

    Get PDF
    Discrimination of honey based on geographical origin is a common fraudulent practice and is one of the most investigated topics in honey authentication. This research aims to discriminate honeys according to their geographical origin by combining elemental fingerprinting with machinelearning techniques. In particular, the main objective of this study is to distinguish the origin of unifloral and multifloral honeys produced in neighboring regions, such as Sardinia (Italy) and Spain. The elemental compositions of 247 honeys were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The origins of honey were differentiated using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Random Forest (RF). Compared to LDA, RF demonstrated greater stability and better classification performance. The best classification was based on geographical origin, achieving 90% accuracy using Na, Mg, Mn, Sr, Zn, Ce, Nd, Eu, and Tb as predictor
    corecore