125 research outputs found

    Combining robotics with enhanced serotonin-driven cortical plasticity improves post-stroke motor recovery.

    Get PDF
    Despite recent progresses in robotic rehabilitation technologies, their efficacy for post-stroke motor recovery is still limited. Such limitations might stem from the insufficient enhancement of plasticity mechanisms, crucial for functional recovery. Here, we designed a clinically relevant strategy that combines robotic rehabilitation with chemogenetic stimulation of serotonin release to boost plasticity. These two approaches acted synergistically to enhance post-stroke motor performance. Indeed, mice treated with our combined therapy showed substantial functional gains that persisted beyond the treatment period and generalized to non-trained tasks. Motor recovery was associated with a reduction in electrophysiological and neuroanatomical markers of GABAergic neurotransmission, suggesting disinhibition in perilesional areas. To unveil the translational potentialities of our approach, we specifically targeted the serotonin 1A receptor by delivering Buspirone, a clinically approved drug, in stroke mice undergoing robotic rehabilitation. Administration of Buspirone restored motor impairments similarly to what observed with chemogenetic stimulation, showing the immediate translational potential of this combined approach to significantly improve motor recovery after stroke

    Editorial Physiology and Plasticity of Interhemispheric Connections

    Get PDF
    The corpus callosum (CC for aficionados) is the largest fiber bundle in the brain and establishes connections between the hemispheres, and predominantly, but not solely, between the cortical areas. Functionally mysterious for a long time, it shared with the pineal gland the honor of being considered the site of the soul M. Fabri and G. Polonara provide a functional map of callosal topography by charting the BOLD signal evoked in callosal axons by taste, tactile, auditory, and visual stimuli and by motor tasks. This approach is at the frontier of what is usually obtained from BOLD signals. It provides results that are compatible with what is predicted by anatomy in the case of axons originating from primary areas, but it also shows activations that could not have been predicted from anatomy, probably due to axons originating in multisensory areas. K. E. Schmidt finds that, in the visual cortex, CC connections have a multiplicative shift of the responses and this is an interesting finding that goes beyond the old debate of whether callosal connections are excitatory or inhibitory. The finding is placed within the frame of the historical question of the general nature of callosal connections. Hubel and Wiesel V. Beaulé et al. focus on the role of CC connections in disentangling bilateral manual movements. From juvenile, to adult, to pathological conditions, the degrees of manual independence are differently modulated and this may be due to inhibitory action of callosal connections. Interestingly, inhibition between the hemispheres has been repeatedly reported for the motor functions, particularly in 2 Neural Plasticity man, although it has been observed in the visual cortex as well, where it seems to be quickly overridden by the excitatory interactions Over the last 30 years, developmental work on the CC has focused on three main themes: (i) the molecular mechanisms of axonal guidance between the hemispheres, (ii) the establishment of topographical connections, and (iii) the role of activity in the development of the connections. M. Nishikimi et al. review the first of the above themes, with special attention to the midline structures and neighboring axons. They also describe alterations in these navigational mechanisms that result in callosal dysgenesis in humans and mice. Y. Tagawa and T. Hirano review the last of the above issues and provide information on the molecular mechanisms by which spontaneous activity sculpts callosal projections. They conclude that both presynaptic and postsynaptic neuronal activities are critically involved in callosal axon development, and discuss the intracellular signaling pathways that work downstream of neuronal firing. It may be added that the overproduction and elimination of axons in development are central to the second of the themes above and continue to provide testable hypotheses on the nature of developmental plasticity of cortical connectivity Noninvasive structural and functional imaging techniques are taking an increasingly large share of brain studies, but this raises the question of how novel and more traditional, firmly established methodologies map onto each other. The CC is practically unavoidable in non-invasive structural studies, and, therefore, it can provide some general answers because of its central position in the brain, its relative "simplicity" and the amount of anatomical and functional information available. J. F. Olavarria et al. relate the critical period of callosal development, as defined by the reorganization of visual callosal connections caused by early enucleation, to the development of water diffusion parameters. This is important new information that complements the view that callosal plasticity relates to axonal maturation and differentiation. M. G. Knyazeva places callosal maturation as estimated by MRI and coherence EEG analysis, within the context of excitatory and inhibitory interactions between the hemispheres. P. Mathew et al. report data in preterm infants showing a relation between motor-specific scores and fractional anisotropy of anterior midbody of CC, the region where axons interconnecting motor areas course. Finally N. Takeuchi et al. introduce the concept of adult CC plasticity that might be elicited by trans-cranial stimulation in humans. They also discuss the use of brain stimulation techniques as a possible rehabilitation strategy to reinstate interhemispheric balance in patients with stroke

    A triheptanoin-supplemented diet rescues hippocampal hyperexcitability and seizure susceptibility in FoxG1+/- mice

    Get PDF
    The Forkhead Box G1 (FOXG1) gene encodes a transcription factor with an essential role in the mammalian telencephalon development. FOXG1-related disorders, caused by deletions, intragenic mutations or duplications, are usually associated with severe intellectual disability, autistic features, and, in 87% of subjects, epileptiform manifestations. In at least a subset of the patients with FoxG1 mutations, seizures remain intractable, prompting the need for novel therapeutic options. To address this issue, we took advantage of a haploinsufficient animal model, the FoxG1+/- mouse. In vivo electrophysiological analyses of FoxG1+/- mice detected hippocampal hyperexcitability, which turned into overt seizures upon delivery of the proconvulsant kainic acid, as confirmed by behavioral observations. These alterations were associated with decreased expression of the chloride transporter KCC2. Next, we tested whether a triheptanoin-based anaplerotic diet could have an impact on the pathological phenotype of FoxG1+/- mice. This manipulation abated altered neural activity and normalized the enhanced susceptibility to proconvulsant-induced seizures, in addition to rescuing the altered expression of KCC2 and increasing the levels of the GABA transporter vGAT. In conclusion, our data show that FoxG1 haploinsufficiency causes dysfunction of hippocampal circuits and increases the susceptibility to a proconvulsant insult, and that these alterations are rescued by triheptanoin dietary treatment

    Longitudinal Bottom-Up Proteomics of Serum, Serum Extracellular Vesicles, and Cerebrospinal Fluid Reveals Candidate Biomarkers for Early Detection of Glioblastoma in a Murine Model

    Get PDF
    Glioblastoma Multiforme (GBM) is a brain tumor with a poor prognosis and low survival rates. GBM is diagnosed at an advanced stage, so little information is available on the early stage of the disease and few improvements have been made for earlier diagnosis. Longitudinal murine models are a promising platform for biomarker discovery as they allow access to the early stages of the disease. Nevertheless, their use in proteomics has been limited owing to the low sample amount that can be collected at each longitudinal time point. Here we used optimized microproteomics workflows to investigate longitudinal changes in the protein profile of serum, serum small extracellular vesicles (sEVs), and cerebrospinal fluid (CSF) in a GBM murine model. Baseline, pre-symptomatic, and symptomatic tumor stages were determined using non-invasive motor tests. Forty-four proteins displayed significant differences in signal intensities during GBM progression. Dysregulated proteins are involved in cell motility, cell growth, and angiogenesis. Most of the dysregulated proteins already exhibited a difference from baseline at the pre-symptomatic stage of the disease, suggesting that early effects of GBM might be detectable before symptom onset

    The role of activity in synaptic degeneration in a protein misfolding disease, prion disease

    Get PDF
    In chronic neurodegenerative diseases associated with aggregates of misfolded proteins (such as Alzheimer's, Parkinson's and prion disease), there is an early degeneration of presynaptic terminals prior to the loss of the neuronal somata. Identifying the mechanisms that govern synapse degeneration is of paramount importance, as cognitive decline is strongly correlated with loss of presynaptic terminals in these disorders. However, very little is known about the processes that link the presence of a misfolded protein to the degeneration of synapses. It has been suggested that the process follows a simple linear sequence in which terminals that become dysfunctional are targeted for death, but there is also evidence that high levels of activity can speed up degeneration. To dissect the role of activity in synapse degeneration, we infused the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of mice with prion disease and assessed synapse loss at the electron microscopy level. We found that injection of BoNT/A in naĂŻve mice caused a significant enlargement of excitatory presynaptic terminals in the hippocampus, indicating transmission impairment. Long-lasting blockade of activity by BoNT/A caused only minimal synaptic pathology and no significant activation of microglia. In mice with prion disease infused with BoNT/A, rates of synaptic degeneration were indistinguishable from those observed in control diseased mice. We conclude that silencing synaptic activity neither prevents nor enhances the degree of synapse degeneration in prion disease. These results challenge the idea that dysfunction of synaptic terminals dictates their elimination during prion-induced neurodegeneration

    Re-Assembled Botulinum Neurotoxin Inhibits CNS Functions without Systemic Toxicity

    Get PDF
    The therapeutic potential of botulinum neurotoxin type A (BoNT/A) has recently been widely recognized. BoNT/A acts to silence synaptic transmission via specific proteolytic cleavage of an essential neuronal protein, SNAP25. The advantages of BoNT/A-mediated synaptic silencing include very long duration, high potency and localized action. However, there is a fear of possible side-effects of BoNT/A due to its diffusible nature which may lead to neuromuscular blockade away from the injection site. We recently developed a “protein-stapling” technology which allows re-assembly of BoNT/A from two separate fragments. This technology allowed, for the first time, safe production of this popular neuronal silencing agent. Here we evaluated the re-assembled toxin in several CNS assays and assessed its systemic effects in an animal model. Our results show that the re-assembled toxin is potent in inhibiting CNS function at 1 nM concentration but surprisingly does not exhibit systemic toxicity after intraperitoneal injection even at 200 ng/kg dose. This shows that the re-assembled toxin represents a uniquely safe tool for neuroscience research and future medical applications

    The synaptic blocker botulinum toxin A decreases the density and complexity of oligodendrocyte precursor cells in the adult mouse hippocampus

    Get PDF
    Oligodendrocyte progenitor cells (OPCs) are responsible for generating oligodendrocytes, the myelinating cells of the CNS. Life-long myelination is promoted by neuronal activity and is essential for neural network plasticity and learning. OPCs are known to contact synapses and it is proposed that neuronal synaptic activity in turn regulates their behavior. To examine this in the adult, we performed unilateral injection of the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of adult mice. We confirm BoNT/A cleaves SNAP-25 in the CA1 are of the hippocampus, which has been proven to block neurotransmission. Notably, BoNT/A significantly decreased OPC density and caused their shrinkage, as determined by immunolabeling for the OPC marker NG2. Furthermore, BoNT/A resulted in an overall decrease in the number of OPC processes, as well as a decrease in their lengths and branching frequency. These data indicate that synaptic activity is important for maintaining adult OPC numbers and cellular integrity, which is relevant to pathophysiological scenarios characterized by dysregulation of synaptic activity, such as age-related cognitive decline, Multiple Sclerosis and Alzheimer's disease

    Molecular changes underlying decay of sensory responses and enhanced seizure propensity in peritumoral neurons

    Get PDF
    Background: Glioblastoma growth impacts on the structure and physiology of peritumoral neuronal networks, altering the activity of pyramidal neurons which drives further tumor progression. It is therefore of paramount importance to identify glioma-induced changes in pyramidal neurons, since they represent a key therapeutic target. Methods: We longitudinal monitored visual evoked potentials after the orthotopic implant of murine glioma cells into the mouse occipital cortex. With laser microdissection we analysed layer II-III pyramidal neurons molecular profile and with Local Field Potentials (LFP) recordings we evaluated the propensity to seizures in glioma-bearing animals with respect to control mice. Results: We determine the time course of neuronal dysfunction of glioma-bearing mice and we identify a symptomatic stage, based on the decay of visual response. At that time point, we microdissect layer II-III pyramidal neurons and evaluate the expression of a panel of genes involved in synaptic transmission and neuronal excitability. Compared to the control group, peritumoral neurons show a decrease in the expression of the SNARE complex gene SNAP-25 and the alpha1 subunit of the GABA-A receptor. No significant changes are detected in glutamatergic (i.e., AMPA or NMDA receptor subunit) markers. Further reduction of GABA-A signalling by delivery of a benzodiazepine inverse agonist, DMCM (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) precipitates seizures in two mouse models of tumor-bearing mice. Conclusions: These studies reveal novel molecular changes that occur in the principal cells of the tumor-adjacent zone. These modifications may be therapeutically targeted to ameliorate patients' quality of life
    • …
    corecore