3,361 research outputs found

    Detecting common copy number variants in high-throughput sequencing data by using JointSLM algorithm

    Get PDF
    The discovery of genomic structural variants (SVs), such as copy number variants (CNVs), is essential to understand genetic variation of human populations and complex diseases. Over recent years, the advent of new high-throughput sequencing (HTS) platforms has opened many opportunities for SVs discovery, and a very promising approach consists in measuring the depth of coverage (DOC) of reads aligned to the human reference genome. At present, few computational methods have been developed for the analysis of DOC data and all of these methods allow to analyse only one sample at time. For these reasons, we developed a novel algorithm (JointSLM) that allows to detect common CNVs among individuals by analysing DOC data from multiple samples simultaneously. We test JointSLM performance on synthetic and real data and we show its unprecedented resolution that enables the detection of recurrent CNV regions as small as 500 bp in size. When we apply JointSLM to analyse chromosome one of eight genomes with different ancestry, we identify 3000 regions with recurrent CNVs of different frequency and size: hierarchical clustering on these regions segregates the eight individuals in two groups that reflect their ancestry, demonstrating the potential utility of JointSLM for population genetics studies

    Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript

    Get PDF
    Abstract Motivation: The discovery of novel gene fusions can lead to a better comprehension of cancer progression and development. The emergence of deep sequencing of trancriptome, known as RNA-seq, has opened many opportunities for the identification of this class of genomic alterations, leading to the discovery of novel chimeric transcripts in melanomas, breast cancers and lymphomas. Nowadays, few computational approaches have been developed for the detection of chimeric transcripts. Although all of these computational methods show good sensitivity, much work remains to reduce the huge number of false-positive calls that arises from this analysis. Results: We proposed a novel computational framework, named chimEric tranScript detection algorithm (EricScript), for the identification of gene fusion products in paired-end RNA-seq data. Our simulation study on synthetic data demonstrates that EricScript enables to achieve higher sensitivity and specificity than existing methods with noticeably lower running times. We also applied our method to publicly available RNA-seq tumour datasets, and we showed its capability in rediscovering known gene fusions. Availability: The EricScript package is freely available under GPL v3 license at http://ericscript.sourceforge.net. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    Path Linearity of Elite Swimmers in a 400 m Front Crawl Competition

    Get PDF
    none6noIn the frontal crawl, the propulsive action of the limbs causes lateral fluctuations from the straight path, which can be theoretically seen as the best time saving path of the race. The purpose of the present work was to analyze the head trajectory of 10 elite athletes, during a competition of 400 m front crawl, in order to give information regarding the path linearity of elite swimmers. The kinematic analysis of the head trajectories was performed by means of stereo-photogrammetry. Results showed that the forward speed and lateral fluctuations speed are linearly related. Multiple regression analysis of discrete Fourier transformation allowed to distinguish 3 spectral windows identifying 3 specific features: strokes (0.7-5 Hz), breathings (0.4-0.7 Hz), and voluntary adjustments (0-0.4 Hz), which contributed to the energy wasting for 55%, 10%, and 35%, respectively. Both elite swimmers race speed and speed wastage increase while progressing from the 1st to the 8th length during a 400 m front crawl official competition. The main sources of the lateral fluctuations that lead to the increasing speed wastage could be significantly attributed to strokes and voluntary adjustments, while breathings contribution did not reach statistical significance. In conclusion, both strokes and voluntary adjustments are the main energy consuming events that affect path linearity.PubMed ID: 25729292 [PMID]openGatta, Giorgio; Cortesi, Matteo; Lucertini, Francesco; Benelli, Piero; Sisti, Davide; Fantozzi, SilviaGatta, Giorgio; Cortesi, Matteo; Lucertini, Francesco; Benelli, Piero; Sisti, Davide; Fantozzi, Silvi

    Charting differentially methylated regions in cancer with Rocker-meth

    Get PDF
    Matteo Benelli et al. present Rocker-meth, a new Hidden Markov Model (HMM)-based method, to robustly identify differentially methylated regions (DMRs). They use Rocker-meth to analyse more than 6000 methylation profiles across 14 cancer types, providing a catalog of tumor-specific and shared DMRs

    Glucose Metabolic Reprogramming of ER Breast Cancer in Acquired Resistance to the CDK4/6 Inhibitor Palbociclib

    Get PDF
    The majority of breast cancers express the estrogen receptor (ER) and are dependent on estrogen for their growth and survival. Endocrine therapy (ET) is the standard of care for these tumors. However, a superior outcome is achieved in a subset of ER positive (ER+)/human epidermal growth factor receptor 2 negative (HER2−) metastatic breast cancer patients when ET is administrated in combination with a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor, such as palbociclib. Moreover, CDK4/6 inhibitors are currently being tested in ER+/HER2+ breast cancer and reported encouraging results. Despite the clinical advances of a combinatorial therapy using ET plus CDK4/6 inhibitors, potential limitations (i.e., resistance) could emerge and the metabolic adaptations underlying such resistance warrant further elucidation. Here we investigate the glucose-dependent catabolism in a series of isogenic ER+ breast cancer cell lines sensitive to palbociclib and in their derivatives with acquired resistance to the drug. Importantly, ER+/HER2− and ER+/HER2+ cell lines show a different degree of glucose dependency. While ER+/HER2− breast cancer cells are characterized by enhanced aerobic glycolysis at the time of palbociclib sensitivity, ER+/HER2+ cells enhance their glycolytic catabolism at resistance. This metabolic phenotype was shown to have prognostic value and was targeted with multiple approaches offering a series of potential scenarios that could be of clinical relevance

    BRCA2 Germline Mutations Identify Gastric Cancers Responsive to PARP Inhibitors

    Get PDF
    Mutations; Gastric cancers; PARP inhibitorsMutacions; Càncers gàstrics; Inhibidors de PARPMutaciones; Cánceres gástricos; Inhibidores de PARPDespite negative results of clinical trials conducted on the overall population of patients with gastric cancer, PARP inhibitor (PARPi) therapeutic strategy still might represent a window of opportunity for a subpopulation of patients with gastric cancer. An estimated 7% to 12% of gastric cancers exhibit a mutational signature associated with homologous recombination (HR) failure, suggesting that these patients could potentially benefit from PARPis. To analyze responsiveness of gastric cancer to PARPi, we exploited a gastroesophageal adenocarcinoma (GEA) platform of patient-derived xenografts (PDX) and PDX-derived primary cells and selected 10 PDXs with loss-of-function mutations in HR pathway genes. Cell viability assays and preclinical trials showed that olaparib treatment was effective in PDXs harboring BRCA2 germline mutations and somatic inactivation of the second allele. Olaparib responsive tumors were sensitive to oxaliplatin as well. Evaluation of HR deficiency (HRD) and mutational signatures efficiently stratified responder and nonresponder PDXs. A retrospective analysis on 57 patients with GEA showed that BRCA2 inactivating variants were associated with longer progression-free survival upon platinum-based regimens. Five of 7 patients with BRCA2 germline mutations carried the p.K3326* variant, classified as “benign.” However, familial history of cancer, the absence of RAD51 foci in tumor cells, and a high HRD score suggest a deleterious effect of this mutation in gastric cancer. In conclusion, PARPis could represent an effective therapeutic option for BRCA2-mutated and/or high HRD score patients with GEA, including patients with familial intestinal gastric cancer.This work was funded by the Italian Association for Cancer Research (AIRC), IG 20210 and IG 27531 to S. Giordano; IG 23624 to F. Pietrantonio; IG 21770 to S. Corso. FPRC 5×1000 2015 Min. Salute “Strategy” to SG; Fondazione Piemontese per la Ricerca sul Cancro (FPRC) 5×1000 MS2017 PTCRC-intra 2020 to S. Giordano; Ricerca Locale Dept. Oncology 2021 to S. Corso; Italian Ministry of Health-Ricerca Corrente 2022–23. B. Pellegrino was supported by ESMO with a Clinical Translational Fellowship aid supported by Roche and received research grants from GOIRC. Fondazione CR Firenze to M. Benelli

    A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK/PI3K induced malignant growth

    Get PDF
    Somatic mutations activating MAPK/PI3K signalling play a pivotal role in both tumours and brain developmental disorders. We developed a zebrafish model of brain tumour based on somatic expression of oncogenes that activate MAPK/PI3K signalling in neural progenitor cells. HRASV12 was the most effective in inducing both heterotopia and invasive tumours. Tumours, but not heterotopias, require persistent activation of phospho‑(p)ERK and express a gene signature similar to the mesenchymal glioblastoma subtype, with a strong YAP component. Application of a 8-gene signature to human brain tumours establishes that YAP activation distinguishes between mesenchymal glioblastoma and low grade glioma in a wide TCGA sample set including gliomas and glioblastomas (GBMs). This suggests that the activation of YAP may be an important event in brain tumour development, promoting malignant versus benign brain lesions. Indeed, co-expression of dominant active YAP (YAPS5A) and HRASV12 abolishes the development of heterotopias and leads to the sole development of aggressive tumours. Thus, we have developed a model proving that neurodevelopmental disorders and brain tumours may originate from the same somatic mutations activating oncogenes and established that YAP activation is a hallmark of malignant brain tumours
    • 

    corecore