83 research outputs found

    Melting of the Na layers in solid Na0.8CoO2

    Full text link
    Data of 23Na NMR spectra- and relaxation measurements are interpreted as suggesting that, upon increasing temperature the Na layers in Na0.8CoO2 adopt a 2D liquid state at T=291 K. The corresponding first order phase transition is preceded by a rapidly increasing mobility and diffusion of Na ions above 200K. Above 291 K the 23Na NMR response is similar to that previously observed in superionic conductors with planar Na layers.Comment: 4 pages, 4 figure

    Spin fluctuations, magnetic long-range order and Fermi surface gapping in NaxCoO2

    Full text link
    In this study an extended low energy phase diagram for NaxCoO2 is experimentally established with emphasis on the high x range. It is based on systematic heat capacity studies on both polycrystalline and single crystalline samples and on uSR measurements. Main features are the existence of mass enhancement, spin fluctuations without long-range order, and magnetic order with associated Fermi surface gapping. The latter is seen in the electronic density of states (DOS) and suppression of nuclear specific heat. While there is agreement between the band structure and the low energy DOS in the low x range, in the high x range (x > 0.6) the thermodynamically determined DOS is approximately three times that deduced from the angle-resolved photoemission spectroscopy (ARPES)-measured band dispersion or local-density approximation (LDA) calculations.Comment: 9 pages, 5 figure

    Application of numerical methods in the study operational characteristics of the combustion chamber (pumping unit GPA-16U) at different loads

    Get PDF
    We report on X-ray resonance exchange and neutron scattering of metallic GdS. At the LII and LIII absorption edges of Gd, resonance enhancements of more than two orders of magnitude over the non-resonant magnetic scattering are observed. Polarisation analysis proves that these enhancements are due to dipolar transitions from the 2p to the 5d states. The branching ratio between the LII and LIII edges of 2.5 suggests a polarisation of the 5d electrons in the ground state. The antiferromagnetic order is of type II in the fcc lattice. Single crystal diffraction of hot neutrons suggests that the spin direction lies within the (111) planes with a value for the sublattice magnetisation of 6.51(3) μB\mu_{\rm B}. The critical exponent for the sublattice magnetisation has a value of β=0.38(2)\beta = 0.38(2) in agreement with a pure Heisenberg model. Above TN, a sharp component persists in the critical diffuse scattering. Lattice distortions give indications for two additional low-temperature phase transitions at about 49 K and 32 K. We argue that these transitions are not connected to spin reorientations and discuss the possible influence of fourth-order exchange interactions

    Recent advances in understanding the roles of whole genome duplications in evolution

    Get PDF
    Ancient whole-genome duplications (WGDs)—paleopolyploidy events—are key to solving Darwin’s ‘abominable mystery’ of how flowering plants evolved and radiated into a rich variety of species. The vertebrates also emerged from their invertebrate ancestors via two WGDs, and genomes of diverse gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy is common in eukaryotes, and it can be induced, enabling mechanisms and short-term cost-benefit assessments of polyploidy to be studied experimentally. However, the ancient WGDs can be reconstructed only by comparative genomics: these studies are difficult because the DNA duplicates have been through tens or hundreds of millions of years of gene losses, mutations, and chromosomal rearrangements that culminate in resolution of the polyploid genomes back into diploid ones (rediploidisation). Intriguing asymmetries in patterns of post-WGD gene loss and retention between duplicated sets of chromosomes have been discovered recently, and elaborations of signal transduction systems are lasting legacies from several WGDs. The data imply that simpler signalling pathways in the pre-WGD ancestors were converted via WGDs into multi-stranded parallelised networks. Genetic and biochemical studies in plants, yeasts and vertebrates suggest a paradigm in which different combinations of sister paralogues in the post-WGD regulatory networks are co-regulated under different conditions. In principle, such networks can respond to a wide array of environmental, sensory and hormonal stimuli and integrate them to generate phenotypic variety in cell types and behaviours. Patterns are also being discerned in how the post-WGD signalling networks are reconfigured in human cancers and neurological conditions. It is fascinating to unpick how ancient genomic events impact on complexity, variety and disease in modern life

    High-pressure phases of uranium monophosphide studied by synchrotron x-ray diffraction

    Get PDF
    X-ray diffraction studies have been performed on UP powder for pressures up to 51 GPa using synchrotron radiation and a diamond-anvil cell. At ambient pressure UP has the rocksalt structure. The bulk modulus has been determined to B0_0=102(4) GPa and its pressure derivative to B'0_0 =4.0(8). The cubic phase has been found to transform to a new phase, UP II, at about 10 GPa. UP II can be characterized by a rhombohedral Bravais lattice. UP II transforms to an orthorhombic phase, UP III, at 28 GPa. No volume change has been observed at the two transitions. The influence of the 5f electrons on the transformations is discussed

    Interplay between magnetism and sodium vacancy ordering in Na

    No full text

    Tetrathiofulvalene and tetracyanoquinodimethane crystals: Conducting surface versus interface

    No full text
    When a tetrathiofulvalene (TTF) crystal is placed onto a 7,7,8,8‐tetracyanoquinodimethane (TCNQ) crystal at room temperature, a highly conducting layer is formed. In this study, we explore to what degree this is due to physical contact or transfer by sublimation of one species onto the other crystal. We have performed a variety of time‐dependent surface conductivity measurements, including TTF lamination on TCNQ at room temperature and low temperatures, as well as deposition of TTF molecules from the gas phase. Crystal-to-crystal contact insignificantly modifies material conductivity while TTF sublimation onto TCNQ is shown to dominate electronic modification

    Tetrathiofulvalene and tetracyanoquinodimethane crystals: Conducting surface versus interface

    No full text
    When a tetrathiofulvalene (TTF) crystal is placed onto a 7,7,8,8‐tetracyanoquinodimethane (TCNQ) crystal at room temperature, a highly conducting layer is formed. In this study, we explore to what degree this is due to physical contact or transfer by sublimation of one species onto the other crystal. We have performed a variety of time‐dependent surface conductivity measurements, including TTF lamination on TCNQ at room temperature and low temperatures, as well as deposition of TTF molecules from the gas phase. Crystal-to-crystal contact insignificantly modifies material conductivity while TTF sublimation onto TCNQ is shown to dominate electronic modification

    Hyperfine fields at the anion sites in USb1-xTex and f-p hybridization

    No full text
    We report a low temperature (4.2 K) 121Sb and 125Te Mössbauer study of the USb1-xTex solid solutions. Large transferred hyperfine fields are observed at the ligand sites in the magnetically ordered state of the compounds. The hyperfine field is found to be positive and isotropic in the ferromagnetic samples. The large anisotropic contribution to the hyperfine field observed in the antiferromagnetic type I and type IA phases can be interpreted as resulting from the spin polarisation of the ligand 5p states induced via strong hybridization with the uranium 5f valence band.JRC.E.6-Actinides researc
    corecore