72 research outputs found

    Experimental study of carbon-isotope fractionation between diet, hair, and feces of mammalian herbivores

    Get PDF
    Journal ArticleThe carbon-isotope composition of hair and feces offers a glimpse into the diets of mammalian herbivores. It is particularly useful for determining the relative consumption of browse and graze in tropical environments, as these foods have strongly divergent carbon-isotope compositions. Fecal ?13C values reflect the last few days consumption, whereas hair provides longer term dietary information. Previous studies have shown, however, that some fractionation occurs between dietary ?13C values and those of hair and feces

    Using carbon isotope data of fossil bovid communities for palaeoenvironmental reconstruction

    Get PDF
    Reconstructing palaeoenvironments is a major focus of palaeoanthropological research. While many techniques are now available for exploring past environments, fossil bovids remain amongst the most widely utilized sources of environmental information. Most studies of fossil bovids, however, assume implicitly that bovid ecology is the same now as it was in the distant past. Because such uniformitarianist assumptions are not always valid, we have developed a method to provide palaeoenvironmental information from fossil bovids that requires no ecological assumptions. Here, we show that the percentages of C3 and C4 vegetation-consuming bovids in modern environments generally vary according to the amount of woody vegetation present. Application of this C3 / C4 index to the fossil bovid assemblage at Makapansgat shows that, based on carbon isotope data, the percentage of C3-consuming bovids is high, suggesting a great deal of woody vegetation in this vicinity about 3 million years ago

    The confounding effects of source isotopic heterogeneity on consumer-diet and tissue-tissue stable isotope relationships

    Get PDF
    Stable isotope analysis of consumer tissues document patterns of resource use because data are linearly related to isotope compositions of their source(s) (i.e., food, water, etc.). Deviations in parameters estimated for these relationships can arise from variations in consumer tissue-diet spacing (Δ TS ) and the level of isotopic heterogeneity in the source(s). We present a set of simple hypotheses that distinguish between the effects of Δ TS and source isotope heterogeneity. The latter may arise via mixed diets, during tissue turnover, or by isotopic routing of dietary components. We apply these concepts to stable carbon and nitrogen isotope relationships between gut contents and body tissues of large mammal herbivores from mixed C3/C4 South African savannas and test predictions based on the compound- and/or time-specific data archived within each material. Predicted effects of source isotope heterogeneity are readily detected in carbon isotope relationships between materials representing different time periods or comprising bulk versus protein-only diet components. Differences in Δ TS of carbon isotopes across mammal herbivore species with very different feeding niches (and diet isotope compositions) are likely to be small or non-existent in these habitats. Variations in Δ TS estimated for nitrogen isotopes are much greater, leading to inconsistencies that cannot be explained by diet or trophic level effects alone. The effects of source heterogeneity on isotopic relationships generate numerical artefacts that have been misinterpreted as variations in Δ TS . We caution against generalized application of hypotheses based on assumptions of source isotopic homogeneity, even for single diets commonly used in laboratory studies. More careful consideration of how heterogeneity affects consumer-diet relationships is needed for many field and laboratory system

    Problems with paranthropus

    Get PDF
    Carbon isotopic analysis has been challenging our ideas about hominin diet for nearly 30 years. The first study in 1994 revealed that Paranthropus robustus from South Africa consumed principally C3 foods (e.g., tree fruits and leaves) but also about 25% C4/CAM resources (e.g., tropical grasses and sedges). This result was largely consistent with morphological and dental microwear evidence suggesting P. robustus had a diet which included hard objects like nuts and seeds. Decades later, however, P. boisei from eastern Africa was shown to have eaten nearly 80% C4/CAM plants like the contemporaneous grass-eating primate Theropithecus. Moreover, dental microwear revealed no evidence of hard object consumption in P. boisei, suggesting a diet of tough foods such as grass or sedge leaf and stem. So Paranthropus presents us with two central problems: 1) Why do dietary proxies suggest different diets for the two robust australopiths despite their morphological congruity; and 2) How could P. boisei have consumed tough foods with teeth that seem unsuited to the task. Here we review these questions and more with a particular focus on new isotopic data from the Omo and insights that can be gleaned from mammals outside the haplorrhine primates. We argue that extant Primates do not capture the ecomorphological diversity of P. boisei and other extinct primates and should not narrowly circumscribe the behaviors we ascribe to extinct taxa. We also discuss possible digestive strategies for P. boisei in light of its morphology, dietary proxy data, food mechanical properties, and comparative data on mammalian digestive kinetics.info:eu-repo/semantics/publishedVersio

    Utilization of savanna-based resources by Plio-Pleistocene baboons

    Get PDF
    We have determined the tooth enamel carbonate 13C values of five cercopithecoid taxa from the Plio-Pleistocene deposits of Swartkrans Members 1 and 2 and Sterkfontein Member 4. These data were used to determine the relative proportions of C3 and C4 biomass consumed by extinct baboons and contemporary non-human primates. We compared these results with data on modern Papio hamadryas ursinus from different savanna areas in South Africa, as well as with published isotopic data and dietary interpretations based on molar morphology of these taxa. The data reveal little evidence for use of grasses or grass-based foods by modern South African baboons. The fossil papionins Papio hamadryas robinsoni, Papio (Dinopithecus) ingens, and Parapapio spp., however, utilized more savanna-based C4 resources than previously predicted (particularly in the case of P. (D.) ingens). Theropithecus oswaldi had 13C values depicting, as expected, a largely grass-based diet, and we confirm earlier conclusions that this species incorporated a wider range of food items into its diet than do modern T. gelada, as reported in the literature. The colobine monkey, Cercopithecoides williamsi, made extensive use of savanna-.based C4 foods, confirming some degree of terrestrial foraging by the species

    Tracking the fate of digesta 13C and 15N compositions along the ruminant gastrointestinal tract: Does digestion influence the relationship between diet and faeces?

    Get PDF
    Faecal stable isotope compositions reflect wildlife diets, if digestive processes along the gastrointestinal tract (GIT) do not alter diet-faeces isotopic relationships in an unpredictable way. We investigated 13C and 15N compositions of digesta along the ruminant GIT, using Saanen dairy goats kept on pure grass hay or browse for >20days. Isotopic changes occurred in the ventral rumen, and in the small intestine, where digesta had significantly higher δ13C and δ15N (associated with lower C or higher N content, respectively) values relative to other GIT sites. However, effects on isotope fractionation were small (∼1.0‰ for δ13C and ∼ 2.0‰ for δ15N), and were reversed in the hindgut such that faecal isotope compositions did not differ from the foregut. No other substantial isotopic changes occurred across GIT sites, despite the morphophysiological complexity of the ruminant GIT. We found similarly small differences across GIT components of rheem gazelles (Gazella leptoceros) fed a mixture of C3 lucerne and C4 grass, although in this case faeces were 15N-depleted relative to other GIT components. Along with differences in δ15N between goats fed browse or grass, this result implies a systematic difference in diet-faeces δ15N relationships, contingent on the botanical composition of ruminant diets. Thus, while our results support faecal δ13C as a reliable proxy for wildlife diets, further work on factors influencing faecal 15N abundance is needed. Finally, we note high levels of isotopic variability between individuals fed the same diets, even accounting for the relatively short duration of the experiments, suggesting an important influence of stochasticity on isotope fractionatio

    ‘Remote’ behavioural ecology: do megaherbivores consume vegetation in proportion to its presence in the landscape?

    Get PDF
    Examination of the feeding habits of mammalian species such as the African elephant (Loxodonta africana) that range over large seasonally dynamic areas is exceptionally challenging using field-based methods alone. Although much is known of their feeding preferences from field studies, conclusions, especially in relation to differing habits in wet and dry seasons, are often contradictory. Here, two remote approaches, stable carbon isotope analysis and remote sensing, were combined to investigate dietary changes in relation to tree and grass abundances to better understand elephant dietary choice in the Kruger National Park, South Africa. A composited pair of Landsat Enhanced Thematic Mapper satellite images characterising flushed and senescent vegetation states, typical of wet and dry seasons respectively, were used to generate land-cover maps focusing on the forest to grassland gradient. Stable carbon isotope analysis of elephant faecal samples identified the proportion of C3 (typically browse)/C4 (typically grass) in elephant diets in the 1–2 days prior to faecal deposition. The proportion of surrounding C4 land-cover was extracted using concentric buffers centred on faecal sample locations, and related to the faecal %C4 content. Results indicate that elephants consume C4 vegetation in proportion to its availability in the surrounding area during the dry season, but during the rainy season there was less of a relationship between C4 intake and availability, as elephants targeted grasses in these periods. This study illustrates the utility of coupling isotope and cost-free remote sensing data to conduct complementary landscape analysis at highly-detailed, biologically meaningful resolutions, offering an improved ability to monitor animal behavioural patterns at broad geographical scales. This is increasingly important due to potential impacts of climate change and woody encroachment on broad-scale landscape habitat composition, allowing the tracking of shifts in species utilisation of these changing landscapes in a way impractical using field based methods alone

    Stable carbon isotope reconstruction of ungulate diet changes through the seasonal cycle

    Get PDF
    We analysed stable carbon isotope ratios (ð13C) in faeces of 11 African ungulate species from three South African savanna environments to determine whether this approach is sufficiently sensitive to record short-term seasonal diet changes in browsers (BR), mixed-feeders (IM), and grazers (GR). At monthly intervals, faecal ð13C revealed variations in proportions of C3 (browse) to C4 (grass) biomass consumed that were not detected by broader dry versus wet season comparisons, including subtle diet shifts amongst BR and GR. However, trends in faeces were influenced by changes in C3 and C4 plant isotope composition of up to 3‰. Nonetheless, faeces and plants showed strongly similar patterns of variation through the seasonal cycle, so that small diet shifts can be reliably inferred, provided that the variations in plants are controlled for. Faecal ð13C of BR may be further influenced by consumption of isotopically different plant parts such as foliage versus fruit and flowers, and GR faeces may reflect differential utilization of grass following different photosynthetic sub-pathways. Future studies will need to incorporate data that capture isotopic variations in herbivore food sources, and if this is achieved, the approach may well become adopted as a routine addition to traditional methods for assessing diet, habitat use, and habitat condition

    The confounding effects of source isotopic heterogeneity on consumer–diet and tissue–tissue stable isotope relationships

    Full text link
    Stable isotope analysis of consumer tissues document patterns of resource use because data are linearly related to isotope compositions of their source(s) (i.e., food, water, etc.). Deviations in parameters estimated for these relationships can arise from variations in consumer tissue–diet spacing (DTS) and the level of isotopic heterogeneity in the source(s). We present a set of simple hypotheses that distinguish between the effects of DTS and source isotope heterogeneity. The latter may arise via mixed diets, during tissue turnover, or by isotopic routing of dietary components. We apply these concepts to stable carbon and nitrogen isotope relationships between gut contents and body tissues of large mammal herbivores from mixed C3/C4 South African savannas and test predictions based on the compound- and/or time-specific data archived within each material. Predicted effects of source isotope heterogeneity are readily detected in carbon isotope relationships between materials representing different time periods or comprising bulk versus protein-only diet components. Differences in DTS of carbon isotopes across mammal herbivore species with very different feeding niches (and diet isotope compositions) are likely to be small or non-existent in these habitats. Variations in DTS estimated for nitrogen isotopes are much greater, leading to inconsistencies that cannot be explained by diet or trophic level effects alone. The effects of source heterogeneity on isotopic relationships generate numerical artefacts that have been misinterpreted as variations in DTS. We caution against generalized application of hypotheses based on assumptions of source isotopic homogeneity, even for single diets commonly used in laboratory studies. More careful consideration of how heterogeneity affects consumer–diet relationships is needed for many field and laboratory systems
    • …
    corecore