91 research outputs found

    Collaborative tele-directing

    Get PDF

    Generalized linear models for flexible parametric modeling of the hazard function

    Get PDF
    Background: Parametric modelling of survival data is important and reimbursement decisions may depend on the selected distribution. Accurate predictions require sufficiently flexible models to describe adequately the temporal evolution of the hazard function. A rich class of models is available among the framework of generalised linear models (GLMs) and its extensions, but these models are rarely applied to survival data. This manuscript describes the theoretical properties of these more flexible models, and compares their performance to standard survival models in a reproducible case- study. Methods: We describe how survival data may be analysed with GLMs and its extensions: fractional polynomials, spline models, generalised additive models, generalised linear mixed (frailty) models and dynamic survival models. For each, we provide a comparison of the strengths and limitations of these approaches. For the case-study we compare within-sample fit, the plausibility of extrapolations and extrapolation performance based on data-splitting. Results: Viewing standard survival models as GLMs shows that many impose a restrictive assumption of linearity. For the case-study, GLMs provided better within-sample fit and more plausible extrapolations. However, they did not improve extrapolation performance. We also provide guidance to aid in choosing between the different approaches based on GLMs and its extensions. Conclusions: The use of GLMs for parametric survival analysis can out-perform standard parametric survival models, although the improvements were modest in our case-study. This approach is currently seldom used. We provide guidance on both implementing these models and choosing between them. The reproducible case-study will help to increase uptake of these models

    The WHO-ITU MyopiaEd Programme: A Digital Message Programme Targeting Education on Myopia and Its Prevention

    Get PDF
    The objective of this paper is to provide an overview of the World Health Organization - International Telecommunication Union MyopiaEd programme - a digital message programme targeting education on myopia and its prevention. The development of the MyopiaEd programme included 4 key steps: (1) Conceptualization and consultation with experts in the field of myopia, mHealth and health behavior change; (2) Creation of SMS message libraries and programme algorithm; (3) Review of the message libraries to ensure relevance to the target audience; and (4) Pre-testing amongst end-user groups to ensure that the design of the programme and the message content were understandable. After reviewing the available evidence and considering input of the experts, the aims, end users and key themes of the programme were finalized. Separate SMS-adapted message libraries were developed, reviewed and pre-tested for four target end-user groups; (1) general population involved in the care of children (2) parents or caregivers of children with myopia; (3) adolescents with myopia; and (4) adults with myopia. The message libraries are part of a comprehensive toolkit, developed through a consultative process with experts in digital health, to support implementation within countries. The development of the MyopiaEd programme aims to provide a basis for Member States and other stakeholders to develop, implement and monitor large-scale mHealth programmes. It is aimed at raising awareness of good eye care behaviors and addressing common reasons for non-compliance to spectacle wear. The next steps will involve adapting and evaluating the MyopiaEd programme in selected settings

    Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases

    Get PDF
    Quantitative analysis and mathematical models are useful tools in informing strategies to control or eliminate disease. Currently, there is an urgent need to develop these tools to inform policy to achieve the 2020 goals for neglected tropical diseases (NTDs). In this paper we give an overview of a collection of novel model-based analyses which aim to address key questions on the dynamics of transmission and control of nine NTDs: Chagas disease, visceral leishmaniasis, human African trypanosomiasis, leprosy, soil-transmitted helminths, schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. Several common themes resonate throughout these analyses, including: the importance of epidemiological setting on the success of interventions; targeting groups who are at highest risk of infection or re-infection; and reaching populations who are not accessing interventions and may act as a reservoir for infection,. The results also highlight the challenge of maintaining elimination 'as a public health problem' when true elimination is not reached. The models elucidate the factors that may be contributing most to persistence of disease and discuss the requirements for eventually achieving true elimination, if that is possible. Overall this collection presents new analyses to inform current control initiatives. These papers form a base from which further development of the models and more rigorous validation against a variety of datasets can help to give more detailed advice. At the moment, the models' predictions are being considered as the world prepares for a final push towards control or elimination of neglected tropical diseases by 2020

    SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features

    Get PDF
    We present panchromatic observations and modeling of the Calcium-rich supernova (SN) 2019ehk in the star-forming galaxy M100 (d ≈ 16.2 Mpc) starting 10 hr after explosion and continuing for ~300 days. SN 2019ehk shows a double-peaked optical light curve peaking at t = 3 and 15 days. The first peak is coincident with luminous, rapidly decaying Swift-XRT–discovered X-ray emission (L_x ≈ 10⁴¹ erg s⁻¹ at 3 days; L_x ∝ t⁻³), and a Shane/Kast spectral detection of narrow Hα and He II emission lines (v ≈ 500 km s⁻¹) originating from pre-existent circumstellar material (CSM). We attribute this phenomenology to radiation from shock interaction with extended, dense material surrounding the progenitor star at r (0.1–1) × 10¹⁷ cm. The photometric and spectroscopic properties during the second light-curve peak are consistent with those of Ca-rich transients (rise-time of t_r = 13.4 ± 0.210 days and a peak B-band magnitude of M_B = −15.1 ± 0.200 mag). We find that SN 2019ehk synthesized (3.1 ± 0.11) × 10⁻² M_⊙ of ⁵⁶Ni and ejected M_(ej) = (0.72 ± 0.040) M⊙ total with a kinetic energy E_k = (1.8 ± 0.10) × 10⁵⁰ erg. Finally, deep HST pre-explosion imaging at the SN site constrains the parameter space of viable stellar progenitors to massive stars in the lowest mass bin (~10 M_⊙) in binaries that lost most of their He envelope or white dwarfs (WDs). The explosion and environment properties of SN 2019ehk further restrict the potential WD progenitor systems to low-mass hybrid HeCO WD+CO WD binaries
    corecore