3,842 research outputs found
Rotor vibration caused by external excitation and rub
For turbomachinery with low natural frequencies, considerations have been recently required for rotor vibrations caused by external forces except unbalance one, such as foundation motion, seismic wave, rub and so forth. Such a forced vibration is investigated analytically and experimentally in the present paper. Vibrations in a rotor-bearing system under a harmonic excitation are analyzed by the modal technique in the case of a linear system including gyroscopic effect. For a nonlinear system a new and powerful quasi-modal technique is developed and applied to the vibration caused by rub
Element Stratification in the Middle-Aged Type Ia Supernova Remnant G344.7-0.1
Despite their importance, a detailed understanding of Type Ia supernovae (SNe
Ia) remains elusive. X-ray measurements of the element distributions in
supernova remnants (SNRs) offer important clues for understanding the explosion
and nucleosynthesis mechanisms for SNe Ia. However, it is challenging to
observe the entire ejecta mass in X-rays for young SNRs, because the central
ejecta may not have been heated by the reverse shock yet. Here we present over
200 kilosecond Chandra observations of the Type Ia SNR G344.7-0.1, whose age is
old enough for the reverse shock to have reached the SNR center, providing an
opportunity to investigate the distribution of the entire ejecta mass. We
reveal a clear stratification of heavy elements with a centrally peaked
distribution of the Fe ejecta surrounded by intermediate-mass elements (IMEs:
Si, S, Ar Ca) with an arc-like structure. The centroid energy of the Fe K
emission is marginally lower in the central Fe-rich region than in the outer
IME-rich regions, suggesting that the Fe ejecta were shock-heated more
recently. These results are consistent with the prediction for standard SN Ia
models, where the heavier elements are synthesized in the interior of an
exploding white dwarf. We find, however, that the peak location of the Fe K
emission is slightly offset to the west with respect to the geometric center of
the SNR. This apparent asymmetry is likely due to the inhomogeneous density
distribution of the ambient medium, consistent with our radio observations of
the ambient molecular and neutral gas.Comment: 16 pages, 10 figures, Accepted for publication in Astrophysical
Journa
Fibrations on four-folds with trivial canonical bundles
Four-folds with trivial canonical bundles are divided into six classes
according to their holonomy group. We consider examples that are fibred by
abelian surfaces over the projective plane. We construct such fibrations in
five of the six classes, and prove that there is no such fibration in the sixth
class. We classify all such fibrations whose generic fibre is the Jacobian of a
genus two curve.Comment: 28 page
Simulating the Hot X-ray Emitting Gas in Elliptical Galaxies
We study the chemo-dynamical evolution of elliptical galaxies and their hot
X-ray emitting gas using high-resolution cosmological simulations. Our Tree
N-body/SPH code includes a self-consistent treatment of radiative cooling, star
formation, supernovae feedback, and chemical enrichment. We present a series of
LCDM cosmological simulations which trace the spatial and temporal evolution of
heavy element abundance patterns in both the stellar and gas components of
galaxies. X-ray spectra of the hot gas are constructed via the use of the
vmekal plasma model, and analysed using XSPEC with the XMM EPN response
function. Simulation end-products are quantitatively compared with the
observational data in both the X-ray and optical regime. We find that radiative
cooling is important to interpret the observed X-ray luminosity, temperature,
and metallicity of the interstellar medium of elliptical galaxies. However,
this cooled gas also leads to excessive star formation at low redshift, and
therefore results in underlying galactic stellar populations which are too blue
with respect to observations.Comment: 6 pages, 3 figures, to appear in the proceedings of "The IGM/Galaxy
Connection - The Distribution of Baryons at z=0", ed. M. Putman & J.
Rosenberg; High resolution version is available at
http://astronomy.swin.edu.au/staff/dkawata/research/papers.htm
Prediction of Instability in Rotor-Seal Systems using Forward Whirl Magnetic Bearing Excitation
To separate different fluids and pressure levels in high-speed turbomachinery or pumps, mostly contactless seals are used. The leakage flow inside the seal gap applies forces to the vibrating rotor system in deflectional and tangential directions, that are dependent on the rotational speed. Above a speed limit, mainly tangential seal forces can lead to self-excited vibrations and, ultimately, rotor instability. This is similar to the “oil whip” phenomenon in journal bearings. To predict the speed limit, two methods are shown and compared: Simulations based on the bulk flow assumptions and an experimental method. To demonstrate the application, a test rig is used. The experimental method uses measured transfer functions, utilizing an active magnetic bearing for forward whirl excitation in the safe operational range. The speed limit can be predicted by analyzing and extrapolating the vibrational behavior of the rotor-seal system
Electronic Control of Spin Alignment in pi-Conjugated Molecular Magnets
Intramolecular spin alignment in pi-conjugated molecules is studied
theoretically in a model of a Peierls-Hubbard chain coupled with two localized
spins. By means of the exact diagonalization technique, we demonstrate that a
spin singlet (S=0) to quartet (S=3/2) transition can be induced by electronic
doping, depending on the chain length, the positions of the localized spins,
and the sign of the electron-spin coupling. The calculated results provides a
theoretical basis for understanding the mechanism of spin alignment recently
observed in a diradical donor molecule.Comment: 4 pages, 4 figures, Physical Review Letters (in press
Alveolar soft-part sarcoma of the retroperitoneum
The definitive version is available at www.blackwell-synergy.com.ArticleInternational Journal of Urology. 13(10): 1355-1357 (2006)journal articl
Magnetic Properties of 2-Dimensional Dipolar Squares: Boundary Geometry Dependence
By means of the molecular dynamics simulation on gradual cooling processes,
we investigate magnetic properties of classical spin systems only with the
magnetic dipole-dipole interaction, which we call dipolar systems. Focusing on
their finite-size effect, particularly their boundary geometry dependence, we
study two finite dipolar squares cut out from a square lattice with
and , where is an angle between the direction of the lattice axis
and that of the square boundary. Distinctly different results are obtained in
the two dipolar squares. In the square, the ``from-edge-to-interior
freezing'' of spins is observed. Its ground state has a multi-domain structure
whose domains consist of the two among infinitely (continuously) degenerated
Luttinger-Tisza (LT) ground-state orders on a bulk square lattice, i.e., the
two antiferromagnetically aligned ferromagnetic chains (af-FMC) orders directed
in parallel to the two lattice axes. In the square, on the other
hand, the freezing starts from the interior of the square, and its ground state
is nearly in a single domain with one of the two af-FMC orders. These geometry
effects are argued to originate from the anisotropic nature of the
dipole-dipole interaction which depends on the relative direction of sites in a
real space of the interacting spins.Comment: 21 pages, 13 figures, submitted to Journal of Physical Society Japa
Thermodynamics of the Coma Cluster Outskirts
We present results from a large mosaic of Suzaku observations of the Coma
Cluster, the nearest and X-ray brightest hot, dynamically active, non-cool core
system, focusing on the thermodynamic properties of the ICM on large scales.
For azimuths not aligned with an infalling subcluster towards the southwest,
our measured temperature and X-ray brightness profiles exhibit broadly
consistent radial trends, with the temperature decreasing from about 8.5 keV at
the cluster center to about 2 keV at a radius of 2 Mpc, which is the edge of
our detection limit. The SW merger significantly boosts the surface brightness,
allowing us to detect X-ray emission out to ~2.2 Mpc along this direction.
Apart from the southwestern infalling subcluster, the surface brightness
profiles show multiple edges around radii of 30-40 arcmin. The azimuthally
averaged temperature profile, as well as the deprojected density and pressure
profiles, all show a sharp drop consistent with an outward propagating shock
front located at 40 arcmin, corresponding to the outermost edge of the giant
radio halo observed at 352 MHz with the WSRT. The shock front may be powering
this radio emission. A clear entropy excess inside of r_500 reflects the
violent merging events linked with these morphological features. Beyond r_500,
the entropy profiles of the Coma Cluster along the relatively relaxed
directions are consistent with the power-law behavior expected from simple
models of gravitational large-scale structure formation. The pressure is also
in agreement at these radii with the expected values measured from SZ data from
the Planck satellite. However, due to the large uncertainties associated with
the Coma Cluster measurements, we cannot yet exclude an entropy flattening in
this system consistent with that seen in more relaxed cool core clusters.Comment: submitted to ApJ; revised after first referee repor
- …