84 research outputs found

    Upregulation of Relaxin after Experimental Subarachnoid Hemorrhage in Rabbits

    Get PDF
    Background. Although relaxin causes vasodilatation in systemic arteries, little is known about its role in cerebral arteries. We investigated the expression and role of relaxin in basilar arteries after subarachnoid hemorrhage (SAH) in rabbits. Methods. Microarray analysis with rabbit basilar artery RNA was performed. Messenger RNA expression of relaxin-1 and relaxin/insulinlike family peptide receptor 1 (RXFP1) was investigated with quantitative RT-PCR. RXFP1 expression in the basilar artery was investigated with immunohistochemistry. Relaxin concentrations in cerebrospinal fluid (CSF) and serum were investigated with an enzyme-linked immunosorbent assay. Using human brain vascular smooth muscle cells (HBVSMC) preincubated with relaxin, myosin light chain phosphorylation (MLC) was investigated with immunoblotting after endothelin-1 stimulation. Results. After SAH, RXFP1 mRNA and protein were significantly downregulated on day 3, whereas relaxin-1 mRNA was significantly upregulated on day 7. The relaxin concentration in CSF was significantly elevated on days 5 and 7. Pretreatment with relaxin reduced sustained MLC phosphorylation induced by endothelin-1 in HBVSMC. Conclusion. Upregulation of relaxin and downregulation of RXFP1 after SAH may participate in development of cerebral vasospasm. Downregulation of RXFP1 may induce a functional decrease in relaxin activity during vasospasm. Understanding the role of relaxin may provide further insight into the mechanisms of cerebral vasospasm

    Detections of [C II] 158 μ\mum and [O III] 88 μ\mum in a Local Lyman Continuum Emitter, Mrk 54, and its Implications to High-redshift ALMA Studies

    Full text link
    We present integral field, far-infrared (FIR) spectroscopy of Mrk 54, a local Lyman Continuum Emitter (LCE), obtained with FIFI-LS on the Stratospheric Observatory for Infrared Astronomy. This is only the second time, after Haro 11, that [C II] 158 μ\mum and [O III] 88 μ\mum spectroscopy of the known LCEs have been obtained. We find that Mrk 54 has a strong [C II] emission that accounts for 1\sim1% of the total FIR luminosity, whereas it has only moderate [O III] emission, resulting in the low [O III]/[C II] luminosity ratio of 0.22±0.060.22\pm0.06. In order to investigate whether [O III]/[C II] is a useful tracer of fescf_{\rm esc} (LyC escape fraction), we examine the correlations of [O III]/[C II] and (i) the optical line ratio of O32\rm O_{32} \equiv [O III] 5007 \AA/[O II] 3727 \AA, (ii) specific star formation rate, (iii) [O III] 88 μ\mum/[O I] 63 μ\mum ratio, (iv) gas phase metallicity, and (v) dust temperature based on a combined sample of Mrk 54 and the literature data from the Herschel Dwarf Galaxy Survey and the LITTLE THINGS Survey. We find that galaxies with high [O III]/[C II] luminosity ratios could be the result of high ionization (traced by O32\rm O_{32}), bursty star formation, high ionized-to-neutral gas volume filling factors (traced by [O III] 88 μ\mum/[O I] 63 μ\mum), and low gas-phase metallicities, which is in agreement with theoretical predictions. We present an empirical relation between the [O III]/[C II] ratio and fescf_{\rm esc} based on the combination of the [O III]/[C II] and O32\rm O_{32} correlation, and the known relation between O32\rm O_{32} and fescf_{\rm esc}. The relation implies that high-redshift galaxies with high [O III]/[C II] ratios revealed by ALMA may have fesc0.1f_{\rm esc}\gtrsim0.1, significantly contributing to the cosmic reionization.Comment: 14 pages, 5 figures, Accepted for publication in Ap

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    RFamidergic neurons in the olfactory centers of the terrestrial slug Limax

    No full text
    Abstract Background The terrestrial slug Limax has long been used as a model for the study of olfactory information processing and odor learning. Olfactory inputs from the olfactory epithelium are processed in the tentacular ganglion and then in the procerebrum. Glutamate and acetylcholine are the major neurotransmitters used in the procerebrum. Phe-Met-Arg-Phe-NH2 (FMRFamide) has been shown to be involved in the regulation of the network activity of the procerebrum. Although there are thought to be various RFamide family peptides other than FMRFamide that are potentially recognized by anti-FMRFamide antibody in the central nervous system of mollusks, identifying the entire repertoire of RFamide peptides in Limax has yet to be achieved. Methods In the present study, we made a comprehensive search for RFamide peptide-encoding genes from the transcriptome data of Limax, and identified 12 genes. The expression maps of these RFamide genes were constructed by in situ hybridization in the cerebral ganglia including the procerebrum, and in the superior/inferior tentacles. Results Ten of 12 genes were expressed in the procerebrum, and nine of 12 genes were expressed in the tentacular ganglia. Gly-Ser-Leu-Phe-Arg-Phe-NH2 (GSLFRFamide), which is encoded by two different genes, LFRFamide1 (Leu-Phe-Arg-Phe-NH2–1) and LFRFamide2 (Leu-Phe-Arg-Phe-NH2–2), decreased the oscillatory frequency of the local field potential oscillation in the procerebrum when exogenously applied in vitro. We also found by immunohistochemistry that the neurons expressing pedal peptide send efferent projections from the procerebrum back to the tentacular ganglion. Conclusion Our findings suggest the involvement of a far wider variety of RFamide family peptides in the olfactory information processing in Limax than previously thought

    Non-Tunneling Edge-Overlay Model using OpenFlow for Cloud Datacenter Networks

    No full text

    A Generic and Efficient Local Service Function Chaining Framework for User VM-Dedicated Micro-VNFs

    No full text

    Context-Dependent Passive Avoidance Learning in the Terrestrial Slug Limax

    No full text
    corecore