112 research outputs found

    KrĂĽppel-Like Factor 6 Expression Changes during Trophoblast Syncytialization and Transactivates ĂźhCG and PSG Placental Genes

    Get PDF
    BACKGROUND: Krüppel-like factor-6 (KLF6) is a widely expressed member of the Sp1/KLF family of transcriptional regulators involved in differentiation, cell cycle control and proliferation in several cell systems. Even though the highest expression level of KLF6 has been detected in human and mice placenta, its function in trophoblast physiology is still unknown. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we explored KLF6 expression and sub-cellular distribution in human trophoblast cells differentiating into the syncytial pathway, and its role in the regulation of genes associated with placental development and pregnancy maintenance. Confocal immunofluorescence microscopy demonstrated that KLF6 is expressed throughout human cytotrophoblast differentiation showing no evident modifications in its nuclear and cytoplasmic localization pattern. KLF6 transcript and protein peaked early during the syncytialization process as determined by qRT-PCR and western blot assays. Overexpression of KLF6 in trophoblast-derived JEG-3 cells showed a preferential nuclear signal correlating with enhanced expression of human β-chorionic gonadotropin (βhCG) and pregnancy-specific glycoprotein (PSG) genes. Moreover, KLF6 transactivated βhCG5, PSG5 and PSG3 gene promoters. Deletion of KLF6 Zn-finger DNA binding domain or mutation of the consensus KLF6 binding site abolished transactivation of the PSG5 promoter. CONCLUSIONS/SIGNIFICANCE: Results are consistent with KLF6 playing a role as transcriptional regulator of relevant genes for placental differentiation and physiology such as βhCG and PSG, in agreement with an early and transient increase of KLF6 expression during trophoblast syncytialization

    Prognostic Significance of Wnt-1, β-catenin and E-cadherin Expression in Advanced Colorectal Carcinoma

    Get PDF
    Wnt/β-catenin pathway plays an important role in initiation and progression of colorectal oncogenesis. The aim of this study was to determine expression and localization of E-cadherin, β-catenin and Wnt-1 proteins in colorectal tumors. Expression of β-catenin, E-cadherin and Wnt-1 was determined by immunohistochemistry on advanced colorectal cancers. Abnormal expression of E-cadherin, β-catenin, Wnt-1 was observed. Additionally, we revealed correlations between levels of studied proteins and histoclinical data. In multivariate analysis nuclear β-catenin, higher carcinoembryonic antigen serum level before treatment, female sex and tumor localized in colon or rectum were independent unfavorable prognostic factors. These findings support the hypothesis that Wnt/β-catenin pathway plays an important role in advanced colorectal carcinoma

    Paracrine IL-33 Stimulation Enhances Lipopolysaccharide-Mediated Macrophage Activation

    Get PDF
    BACKGROUND: IL-33, a member of the IL-1 family of cytokines, provokes Th2-type inflammation accompanied by accumulation of eosinophils through IL-33R, which consists of ST2 and IL-1RAcP. We previously demonstrated that macrophages produce IL-33 in response to LPS. Some immune responses were shown to differ between ST2-deficient mice and soluble ST2-Fc fusion protein-treated mice. Even in anti-ST2 antibody (Ab)-treated mice, the phenotypes differed between distinct Ab clones, because the characterization of such Abs (i.e., depletion, agonistic or blocking Abs) was unclear in some cases. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the precise role of IL-33, we newly generated neutralizing monoclonal Abs for IL-33. Exogenous IL-33 potentiated LPS-mediated cytokine production by macrophages. That LPS-mediated cytokine production by macrophages was suppressed by inhibition of endogenous IL-33 by the anti-IL-33 neutralizing mAbs. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that LPS-mediated macrophage activation is accelerated by macrophage-derived paracrine IL-33 stimulation

    Gene Expression Programs of Mouse Endothelial Cells in Kidney Development and Disease

    Get PDF
    Endothelial cells are remarkably heterogeneous in both morphology and function, and they play critical roles in the formation of multiple organ systems. In addition endothelial cell dysfunction can contribute to disease processes, including diabetic nephropathy, which is a leading cause of end stage renal disease. In this report we define the comprehensive gene expression programs of multiple types of kidney endothelial cells, and analyze the differences that distinguish them. Endothelial cells were purified from Tie2-GFP mice by cell dissociation and fluorescent activated cell sorting. Microarrays were then used to provide a global, quantitative and sensitive measure of gene expression levels. We examined renal endothelial cells from the embryo and from the adult glomerulus, cortex and medulla compartments, as well as the glomerular endothelial cells of the db/db mutant mouse, which represents a model for human diabetic nephropathy. The results identified the growth factors, receptors and transcription factors expressed by these multiple endothelial cell types. Biological processes and molecular pathways were characterized in exquisite detail. Cell type specific gene expression patterns were defined, finding novel molecular markers and providing a better understanding of compartmental distinctions. Further, analysis of enriched, evolutionarily conserved transcription factor binding sites in the promoters of co-activated genes begins to define the genetic regulatory network of renal endothelial cell formation. Finally, the gene expression differences associated with diabetic nephropathy were defined, providing a global view of both the pathogenic and protective pathways activated. These studies provide a rich resource to facilitate further investigations of endothelial cell functions in kidney development, adult compartments, and disease

    Anti-Tumor Effect of the Mammalian Target of Rapamycin Inhibitor Everolimus in Oral Squamous Cell Carcinoma

    Get PDF
    The mammalian target of rapamycin (mTOR) has recently emerged as a promising target for therapeutic anti-cancer interventions in several human tumors. In present study, we investigated the expression of mTOR, and subsequently examined its relationship with clinicopathological factors and the anti-tumor effect of everolimus (also known as RAD001) in oral squamous cell carcinoma (OSCC). The expression of phosphorylated mTOR (p-mTOR) was immunohistochemically evaluated in specimens obtained from 70 OSCC patients who underwent radical surgery. The relationships between the expression of p-mTOR and clinicopathological factors and survival were determined. We also investigated the effect of everolimus on the OSCC cell lines, SAS, HSC-2, HSC-3, HSC-4, OSC-20, SCC25 and Ca9-22 by the MTT assay. We further evaluated whether mTOR contributed to cell functions by blocking its activity with everolimus, and confirmed the direct target by the Matrigel invasion assay, wound healing assay and Western blotting. p-mTOR was overexpressed in 37 tumors (52.8 %), and correlated with the T classification, N classification, and survival rate (P < 0.05). The treatment with everolimus significantly inhibited cell growth, and significantly reduced the expression of p-mTOR, downstream signaling proteins, and hypoxic related proteins as well as invasion and migration potentials (P < 0.05). The results of the present study suggest that everolimus may represent an attractive approach for the future treatment of OSCC

    New approaches in the diagnosis and treatment of latent tuberculosis infection

    Get PDF
    With nearly 9 million new active disease cases and 2 million deaths occurring worldwide every year, tuberculosis continues to remain a major public health problem. Exposure to Mycobacterium tuberculosis leads to active disease in only ~10% people. An effective immune response in remaining individuals stops M. tuberculosis multiplication. However, the pathogen is completely eradicated in ~10% people while others only succeed in containment of infection as some bacilli escape killing and remain in non-replicating (dormant) state (latent tuberculosis infection) in old lesions. The dormant bacilli can resuscitate and cause active disease if a disruption of immune response occurs. Nearly one-third of world population is latently infected with M. tuberculosis and 5%-10% of infected individuals will develop active disease during their life time. However, the risk of developing active disease is greatly increased (5%-15% every year and ~50% over lifetime) by human immunodeficiency virus-coinfection. While active transmission is a significant contributor of active disease cases in high tuberculosis burden countries, most active disease cases in low tuberculosis incidence countries arise from this pool of latently infected individuals. A positive tuberculin skin test or a more recent and specific interferon-gamma release assay in a person without overt signs of active disease indicates latent tuberculosis infection. Two commercial interferon-gamma release assays, QFT-G-IT and T-SPOT.TB have been developed. The standard treatment for latent tuberculosis infection is daily therapy with isoniazid for nine months. Other options include therapy with rifampicin for 4 months or isoniazid + rifampicin for 3 months or rifampicin + pyrazinamide for 2 months or isoniazid + rifapentine for 3 months. Identification of latently infected individuals and their treatment has lowered tuberculosis incidence in rich, advanced countries. Similar approaches also hold great promise for other countries with low-intermediate rates of tuberculosis incidence

    Preclinical emergence of vandetanib as a potent antitumour agent in mesothelioma: molecular mechanisms underlying its synergistic interaction with pemetrexed and carboplatin

    Get PDF
    BACKGROUND: Although pemetrexed, a potent thymidylate synthase (TS) inhibitor, enhances the cytoytoxic effect of platinum compounds against malignant pleural mesothelioma (MPM), novel combinations with effective targeted therapies are warranted. To this end, the current study evaluates new targeted agents and their pharmacological interaction with carboplatin-pemetrexed in human MPM cell lines. METHODS: We treated H2052, H2452, H28 and MSTO-211H cells with carboplatin, pemetrexed and targeted compounds (gefitinib, erlotinib, sorafenib, vandetanib, enzastaurin and ZM447439) and evaluated the modulation of pivotal pathways in drug activity and cancer cell proliferation. RESULTS: Vandetanib emerged as the compound with the most potent cytotoxic activity, which interacted synergistically with carboplatin and pemetrexed. Drug combinations blocked Akt phosphorylation and increased apoptosis. Vandetanib significantly downregulated epidermal growth factor receptor (EGFR)/Erk/Akt phosphorylation as well as E2F-1 mRNA and TS mRNA/protein levels. Moreover, pemetrexed decreased Akt phosphorylation and expression of DNA repair genes. Finally, most MPM samples displayed detectable levels of EGFR and TS, the variability of which could be used for patients' stratification in future trials with vandetanib-pemetrexed-carboplatin combination. CONCLUSION: Vandetanib markedly enhances pemetrexed-carboplatin activity against human MPM cells. Induction of apoptosis, modulation of EGFR/Akt/Erk phosphorylation and expression of key determinants for pemetrexed and carboplatin activity contribute to this synergistic interaction, and, together with the expression of these determinants in MPM samples, warrant further clinical investigation

    Insights into APC/C: from cellular function to diseases and therapeutics

    Get PDF
    Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets different substrates for ubiquitylation and therefore regulates a variety of cellular processes such as cell division, differentiation, genome stability, energy metabolism, cell death, autophagy as well as carcinogenesis. Activity of APC/C is principally governed by two WD-40 domain proteins, Cdc20 and Cdh1, in and beyond cell cycle. In the past decade, the results based on numerous biochemical, 3D structural, mouse genetic and small molecule inhibitor studies have largely attracted our attention into the emerging role of APC/C and its regulation in biological function, human diseases and potential therapeutics. This review will aim to summarize some recently reported insights into APC/C in regulating cellular function, connection of its dysfunction with human diseases and its implication of therapeutics
    • …
    corecore