98 research outputs found

    The Efficacy and Safety of Dexmedetomidine for Procedural Sedation in Patients Receiving Local Anesthesia Outside the Intensive Care Unit: A Prospective, Double-Blind, Randomized Clinical Phase III Trial in Japan

    Get PDF
    Background: Few studies (in other countries than the US) have reported on the efficacy and safety of dexmedetomidine for sedation of patients undergoing surgical or medical procedures under local anesthesia without intubation outside the intensive care unit. We performed a randomized, double-blind study in Japan. Methods: Adult patients were randomly allocated to receive placebo, dexmedetomidine 0.5 μg/kg (DEX 0.5 group), or dexmedetomidine 1.0 μg/kg (DEX 1.0 group) over 10 min. Then, both dexmedetomidine groups received dexmedetomidine 0.2–0.7 μg/kg/h for maintaining an Observer’s Assessment of Alertness/Sedation Scale (OAA/S) score of ≤ 4; however, propofol was administered to rescue patients whose score exceeded this value. The primary endpoint was the percentage of patients who did not require rescue propofol to achieve and maintain an OAA/S score of ≤ 4. Results: In total, 162 patients were included in the placebo (n = 53), DEX 0.5 (n = 53), and DEX 1.0 (n = 56) groups. Propofol was not required in significantly more patients in the dexmedetomidine 0.5 and 1.0 μg/kg groups (52.8% and 57.1%, respectively) compared with the placebo group (1.9%) (P < 0.001 for both). Common adverse events were protocol-defined hypotension, respiratory depression and bradycardia. The incidence of bradycardia was significantly higher in the DEX 0.5 (26.4%) and DEX 1.0 (30.4%) groups than in the placebo group (9.4%) (P = 0.041 and P = 0.008, respectively). Conclusion: We concluded that a loading dose of 0.5 or 1.0 μg/kg dexmedetomidine followed by infusion at a rate of 0.2–0.7 μg/kg/h provided effective and welltolerated sedation in patients undergoing surgical or medical procedures under local anesthesia without intubation. Clinical trials.gov identifier: NCT0143893

    APOBEC3B is preferentially expressed at the G2/M phase of cell cycle

    Get PDF
    APOBEC3B (A3B) is a cytosine deaminase that converts cytosine to uracil in single-stranded DNA. Cytosine-to-thymine and cytosine-to-guanine base substitution mutations in trinucleotide motifs (APOBEC mutational signatures) were found in various cancers including lymphoid hematological malignancies such as multiple myeloma and A3B has been shown to be an enzymatic source of mutations in those cancers. Although the importance of A3B is being increasingly recognized, it is unclear how A3B expression is regulated in cancer cells as well as normal cells. To answer these fundamental questions, we analyzed 1276 primary myeloma cells using single-cell RNA-sequencing (scRNA-seq) and found that A3B was preferentially expressed at the G2/M phase, in sharp contrast to the expression patterns of other APOBEC3 genes. Consistently, we demonstrated that A3B protein was preferentially expressed at the G2/M phase in myeloma cells by cell sorting. We also demonstrated that normal blood cells expressing A3B were also enriched in G2/M-phase cells by analyzing scRNA-seq data from 86, 493 normal bone marrow mononuclear cells. Furthermore, we revealed that A3B was expressed mainly in plasma cells, CD10+ B cells and erythroid cells, but not in granulocyte-macrophage progenitors. A3B expression profiling in normal blood cells may contribute to understanding the defense mechanism of A3B against viruses, and partially explain the bias of APOBEC mutational signatures in lymphoid but not myeloid malignancies. This study identified the cells and cellular phase in which A3B is highly expressed, which may help reveal the mechanisms behind carcinogenesis and cancer heterogeneity, as well as the biological functions of A3B in normal blood cells

    RETRACTED: The Chromatin-Remodeling Complex WINAC Targets a Nuclear Receptor to Promoters and Is Impaired in Williams Syndrome

    Get PDF
    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been retracted at the request of the Authors.Our paper reported that a chromatin-remodeling complex, WINAC, recruited the unliganded vitamin D receptor to promoters in cooperation with the transcription factor implicated in Williams syndrome, WSTF. The findings provided insights into the coordination between chromatin remodelers and sequence-specific transcription factors and pointed to a role of chromatin remodeling defects in Williams syndrome. We recently identified errors affecting several figure panels where original data were processed inappropriately such that the figure panels do not accurately report the original data. We believe that the most responsible course of action is to retract the paper. We sincerely apologize to the scientific community for any inconvenience that this might cause. The first author, H.K., declined to sign the retraction notice

    CAGE-Seq Reveals that HIV-1 Latent Infection Does Not Trigger Unique Cellular Responses in a Jurkat T Cell Model

    Get PDF
    The cure for HIV-1 is currently stalled by our inability to specifically identify and target latently infected cells. HIV-1 viral RNA/DNA or viral proteins are recognized by cellular mechanisms and induce interferon responses in virus-producing cells, but changes in latently infected cells remain unknown. HIVGKO contains a green fluorescent protein (GFP) reporter under the HIV-1 promoter and a monomeric Kusabira orange 2 (mKO2) reporter under the internal elongation factor alpha (EF1α) promoter. This viral construct enables direct identification of both productively and latently HIV-1-infected cells. In this study, we aim to identify specific cellular transcriptional responses triggered by HIV-1 entry and integration using cap analysis of gene expression (CAGE). We deep sequenced CAGE tags in non-infected and latently and productively infected cells and compared their differentially expressed transcription start site (TSS) profiles. Virus-producing cells had differentially expressed TSSs related to T-cell activation and apoptosis compared to those of non-infected cells or latently infected cells. Surprisingly, latently infected cells had only 33 differentially expressed TSSs compared to those of non-infected cells. Among these, SPP1 and APOE were downregulated in latently infected cells. SPP1 or APOE knockdown in Jurkat T cells increased susceptibility to HIVGKO infection, suggesting that they have antiviral properties. Components of the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway, MLST8, 4EBP, and RPS6, were significant TSSs in productively infected cells, and S6 kinase (S6K) phosphorylation was increased compared to that in latently infected cells, suggesting that mTOR pathway activity plays a role in establishing the latent reservoir. These findings indicate that HIV-1 entry and integration do not trigger unique transcriptional responses when infection becomes latent

    Design, Fabrication and Soundness Test of A Bi2223 Magnet Designed for Cooling by Liquid Hydrogen

    Get PDF
    The critical heat flux in liquid hydrogen is ten times higher than that in liquid helium and is approximately half of that in liquid nitrogen. Since the resistivity of pure metal such as copper or silver at 20 K is less than one-hundredth of that at 300 K, HTS magnets immersed in liquid hydrogen are expected to satisfy the fully cyostable condition or to be stable against high resistive heat generation enough for quench detection at a practical current density. In order to examine cryostability of HTS magnets in liquid hydrogen, a pool-cooled Bi2223 magnet with a 5 T magnetic field at 20 K has been designed, fabricated and tested in liquid nitrogen prior to excitation tests in liquid hydrogen. The magnet consists of six outer double pancake coils with the inner diameter of 0.20 m and four inner double pancake coils with the outer diameter of 0.16 m. The resistive voltage to initiate thermal runaway in the coil assembly in liquid nitrogen was higher than 1 V that is sufficient high for quench detection

    OryzaExpress: An Integrated Database of Gene Expression Networks and Omics Annotations in Rice

    Get PDF
    Similarity of gene expression profiles provides important clues for understanding the biological functions of genes, biological processes and metabolic pathways related to genes. A gene expression network (GEN) is an ideal choice to grasp such expression profile similarities among genes simultaneously. For GEN construction, the Pearson correlation coefficient (PCC) has been widely used as an index to evaluate the similarities of expression profiles for gene pairs. However, calculation of PCCs for all gene pairs requires large amounts of both time and computer resources. Based on correspondence analysis, we developed a new method for GEN construction, which takes minimal time even for large-scale expression data with general computational circumstances. Moreover, our method requires no prior parameters to remove sample redundancies in the data set. Using the new method, we constructed rice GENs from large-scale microarray data stored in a public database. We then collected and integrated various principal rice omics annotations in public and distinct databases. The integrated information contains annotations of genome, transcriptome and metabolic pathways. We thus developed the integrated database OryzaExpress for browsing GENs with an interactive and graphical viewer and principal omics annotations (http://riceball.lab.nig.ac.jp/oryzaexpress/). With integration of Arabidopsis GEN data from ATTED-II, OryzaExpress also allows us to compare GENs between rice and Arabidopsis. Thus, OryzaExpress is a comprehensive rice database that exploits powerful omics approaches from all perspectives in plant science and leads to systems biology
    corecore