52 research outputs found
Solvent Effects on Ionization Potentials of Guanine Runs and Chemically Modified Guanine in Duplex DNA: Effect of Electrostatic Interaction and Its Reduction due to Solvent
We examined the ionization potential (IP) corresponding to the free energy of a hole on duplex DNA by semiempirical molecular orbital theory with a continuum solvent model. As for the contiguous guanines (a guanine run), we found that the IP in the gas phase significantly decreases with the increasing number of nucleotide pairs of the guanine run, whereas the IP in water (OP, oxidation potential) only slightly does. The latter result is consistent with the experimental result for DNA oligomers in water. This decrease in the IP is mainly due to the attractive electrostatic interaction between the hole and a nucleotide pair in the duplex DNA. This interaction is reduced in water, which results in the small decrease in the IP in water. This mechanism explains the discrepancy between the experimental result and the previous computational results obtained by neglecting the solvent. As for the chemically modified guanine, the previous work showed that the removal of some solvent (water) molecules due to the attachment of a neutral functional group to a guanine in a duplex DNA stabilizes the hole on the guanine. One might naively have expected the opposite case, since a polar solvent usually stabilizes ions. This mechanism also explains this unexpected stabilization of a hole as follows. When some water molecules are removed, the attractive electrostatic interaction stabilizing the hole increases, and thus, the hole is stabilized. In order to design the hole energetics by a chemical modification of DNA, this mechanism has to be taken into account and can be used. 1
Recommended from our members
Sulfation of genistein alters its antioxidant properties and its effect on platelet aggregation and monocyte and endothelial function
Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological proper-ties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistem, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis. (C) 2004 Elsevier B.V All rights reserved
- …