238 research outputs found

    Semi-empirical formulation of multiple scattering for Gaussian beam model of heavy charged particles stopping in tissue-like matter

    Get PDF
    Dose calculation for radiotherapy with protons and heavier ions deals with a large volume of path integrals involving a scattering power of body tissue. This work provides a simple model for such demanding applications. There is an approximate linearity between RMS end-point displacement and range of incident particles in water, empirically found in measurements and detailed calculations. This fact was translated into a simple linear formula, from which the scattering power that is only inversely proportional to residual range was derived. The simplicity enabled analytical formulation for ions stopping in water, which was designed to be equivalent with the extended Highland model and agreed with measurements within 2% or 0.02 cm in RMS displacement. The simplicity will also improve the efficiency of numerical path integrals in the presence of heterogeneity.Comment: 6 pages, 3 figures, submitted to Physics in Medicine and Biolog

    Antisense-induced ribosomal frameshifting

    Get PDF
    Programmed ribosomal frameshifting provides a mechanism to decode information located in two overlapping reading frames by diverting a proportion of translating ribosomes into a second open reading frame (ORF). The result is the production of two proteins: the product of standard translation from ORF1 and an ORF1–ORF2 fusion protein. Such programmed frameshifting is commonly utilized as a gene expression mechanism in viruses that infect eukaryotic cells and in a subset of cellular genes. RNA secondary structures, consisting of pseudoknots or stem–loops, located downstream of the shift site often act as cis-stimulators of frameshifting. Here, we demonstrate for the first time that antisense oligonucleotides can functionally mimic these RNA structures to induce +1 ribosomal frameshifting when annealed downstream of the frameshift site, UCC UGA. Antisense-induced shifting of the ribosome into the +1 reading frame is highly efficient in both rabbit reticulocyte lysate translation reactions and in cultured mammalian cells. The efficiency of antisense-induced frameshifting at this site is responsive to the sequence context 5′ of the shift site and to polyamine levels

    3D silicon microdosimetry and RBE study using C-12 ion of different energies

    Get PDF
    This paper presents a new version of the 3D mesa "bridge" microdosimeter comprised of an array of 4248 silicon cells fabricated on 10 µm thick silicon-on-insulator substrate. This microdosimeter has been designed to overcome limitations existing in previous generation silicon microdosimeters and it provides well-defined sensitive volumes and high spatial resolution. The charge collection characteristics of the new 3D mesa microdosimeter were investigated using the ANSTO heavy ion microprobe, utilizing 5.5 MeV He2+ ions. Measurement of microdosimetric quantities allowed for the determination of the Relative Biological Effectiveness of 290 MeV/u and 350 MeV/u 12C heavy ion therapy beams at the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. The microdosimetric RBE obtained showed good agreement with the tissue-equivalent proportional counter. Utilizing the high spatial resolution of the SOI microdosimeter, the LET spectra for 70 MeV 12C+6 ions, like those present at the distal edge of 290 and 350 MeV/u beams, were obtained as the ions passed through thin layers of polyethylene film. This microdosimeter can provide useful information about the lineal energy transfer (LET) spectra downstream of the protective layers used for shielding of electronic devices for single event upset prediction

    Computational modeling of beam-customization devices for heavy-charged-particle radiotherapy

    Get PDF
    A model for beam customization with collimators and a range-compensating filter based on the phase-space theory for beam transport is presented for dose distribution calculation in treatment planning of radiotherapy with protons and heavier ions. Independent handling of pencil beams in conventional pencil-beam algorithms causes unphysical collimator-height dependence in the middle of large fields, which is resolved by the framework comprised of generation, transport, collimation, regeneration, range-compensation, and edge-sharpening processes with a matrix of pencil beams. The model was verified to be consistent with measurement and analytic estimation at a submillimeter level in penumbra of individual collimators with a combinational-collimated carbon-ion beam. The model computation is fast, accurate, and readily applicable to pencil-beam algorithms in treatment planning with capability of combinational collimation to make best use of the beam-customization devices.Comment: 16 pages, 5 figure

    Present developments in reaching an international consensus for a model-based approach to particle beam therapy

    Get PDF
    Particle beam therapy (PBT), including proton and carbon ion therapy, is an emerging innovative treatment for cancer patients. Due to the high cost of and limited access to treatment, meticulous selection of patients who would benefit most from PBT, when compared with standard X-ray therapy (XRT), is necessary. Due to the cost and labor involved in randomized controlled trials, the model-based approach (MBA) is used as an alternative means of establishing scientific evidence in medicine, and it can be improved continuously. Good databases and reasonable models are crucial for the reliability of this approach. The tumor control probability and normal tissue complication probability models are good illustrations of the advantages of PBT, but pre-existing NTCP models have been derived from historical patient treatments from the XRT era. This highlights the necessity of prospectively analyzing specific treatment-related toxicities in order to develop PBT-compatible models. An international consensus has been reached at the Global Institution for Collaborative Research and Education (GI-CoRE) joint symposium, concluding that a systematically developed model is required for model accuracy and performance. Six important steps that need to be observed in these considerations include patient selection, treatment planning, beam delivery, dose verification, response assessment, and data analysis. Advanced technologies in radiotherapy and computer science can be integrated to improve the efficacy of a treatment. Model validation and appropriately defined thresholds in a cost-effectiveness centered manner, together with quality assurance in the treatment planning, have to be achieved prior to clinical implementation

    Focal dose escalation using FDG-PET-guided intensity-modulated radiation therapy boost for postoperative local recurrent rectal cancer: a planning study with comparison of DVH and NTCP

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the safety of focal dose escalation to regions with standardized uptake value (SUV) >2.0 using intensity-modulated radiation therapy (IMRT) by comparison of radiotherapy plans using dose-volume histograms (DVHs) and normal tissue complication probability (NTCP) for postoperative local recurrent rectal cancer</p> <p>Methods</p> <p>First, we performed conventional radiotherapy with 40 Gy/20 fr. (CRT 40 Gy) for 12 patients with postoperative local recurrent rectal cancer, and then we performed FDG-PET/CT radiotherapy planning for those patients. We defined the regions with SUV > 2.0 as biological target volume (BTV) and made three boost plans for each patient: 1) CRT boost plan, 2) IMRT without dose-painting boost plan, and 3) IMRT with dose-painting boost plan. The total boost dose was 20 Gy. In IMRT with dose-painting boost plan, we increased the dose for BTV+5 mm by 30% of the prescribed dose. We added CRT boost plan to CRT 40 Gy (<it>summed plan 1</it>), IMRT without dose-painting boost plan to CRT 40 Gy (<it>summed plan 2</it>) and IMRT with dose-painting boost plan to CRT 40 Gy (<it>summed plan 3</it>), and we compared those plans using DVHs and NTCP.</p> <p>Results</p> <p>D<sub>mean </sub>of PTV-PET and that of PTV-CT were 26.5 Gy and 21.3 Gy, respectively. V<sub>50 </sub>of small bowel PRV in <it>summed plan 1 </it>was significantly higher than those in other plans ((<it>summed plan 1 </it>vs. <it>summed plan 2 </it>vs. <it>summed plan 3</it>: 47.11 ± 45.33 cm<sup>3 </sup>vs. 40.63 ± 39.13 cm<sup>3 </sup>vs. 41.25 ± 39.96 cm<sup>3</sup>(p < 0.01, respectively)). There were no significant differences in V<sub>30</sub>, V<sub>40</sub>, V<sub>60</sub>, D<sub>mean </sub>or NTCP of small bowel PRV.</p> <p>Conclusions</p> <p>FDG-PET-guided IMRT can facilitate focal dose-escalation to regions with SUV above 2.0 for postoperative local recurrent rectal cancer.</p
    corecore