3,987 research outputs found

    High Resolution Spectrometry of Leaf and Canopy Chemistry for Biochemical Cycling

    Get PDF
    High-resolution laboratory spectrophotometer and Airborne Imaging Spectrometer (AIS) data were used to analyze forest leaf and canopy chemistry. Fundamental stretching frequencies of organic bonds in the visible, near infrared and short-wave infrared are indicative of concentrations and total content of nitrogen, phosphorous, starch and sugar. Laboratory spectrophotometer measurements showed very strong negative correlations with nitrogen (measured using wet chemistry) in the visible wavelengths. Strong correlations with green wet canopy weight in the atmospheric water absorption windows were observed in the AIS data. A fairly strong negative correlation between the AIS data at 1500 nm and total nitrogen and nitrogen concentration was evident. This relationship corresponds very closely to protein absorption features near 1500 nm

    Applications of HCMM data to soil moisture snow and estuarine current studies

    Get PDF
    There are no author-identified significant results in this report

    Application of HCMM data to soil moisture snow and estuarine current studies

    Get PDF
    There are no author-identified significant results in this report

    Applications of HCMM data to soil moisture snow and estuarine current studies

    Get PDF
    There are no author-identified significant results in this report

    Selected Hydrologic Applications of LANDSAT-2 Data: an Evaluation

    Get PDF
    The author has identified the following significant results. Estimates of soil moisture were obtained from visible, near-IR gamma ray and microwave data. Attempts using GOES thermal-IR were unsuccessful due to resolutions (8 km). Microwaves were the most effective at soil moisture estimates, with and without vegetative cover. Gamma rays provided only one value for the test site, produced by many data points obtained from overlapping 150 meter diameter circles. Even though the resulting averaged value was near the averaged field moisture value, this method suffers from atmospheric contaminants, the need to fly at low altitudes, and the necessity of prior calibration of a given site. Visible and near-IR relationships are present for bare fields but appear to be limited to soil moisture levels between 5 and 20%. The densely vegetated alfalfa fields correlated with near-IR reflectance only; soil moisture values from wheat fields showed no relation to either or near-IR MSS data

    Evaluation of LANDSAT-2 data for selected hydrologic applications

    Get PDF
    There are no author-identified significant results in this report

    Pharmacologically relevant intake during chronic, free-choice drinking rhythms in selectively bred high alcohol-preferring mice

    Get PDF
    Multiple lines of high alcohol-preferring (HAP) mice were selectively bred for their intake of 10% ethanol (v/v) during 24-hour daily access over a 4-week period, with the highest drinking lines exhibiting intakes in excess of 20 g/kg/day. We observed circadian drinking patterns and resulting blood ethanol concentrations (BECs) in the HAP lines. We also compared the drinking rhythms and corresponding BECs of the highest drinking HAP lines to those of the C57BL/6J (B6) inbred strain. Adult male and female crossed HAP (cHAP), HAP replicate lines 1, 2, 3 and B6 mice had free-choice access to 10% ethanol and water for 3 weeks prior to bi-hourly assessments of intake throughout the dark portion of the light-dark cycle. All HAP lines reached and maintained a rate of alcohol intake above the rate at which HAP1 mice metabolize alcohol, and BECs were consistent with this finding. Further, cHAP and HAP1 mice maintained an excessive level of intake throughout the dark portion of the cycle, accumulating mean BEC levels of 261.5 ± 18.09 and 217.9 ± 25.02 mg/dl, respectively. B6 mice drank comparatively modestly, and did not accumulate high BEC levels (53.63 + 8.15 mg/dl). Free-choice drinking demonstrated by the HAP1 and cHAP lines may provide a unique opportunity for modeling the excessive intake that often occurs in alcohol-dependent individuals, and allow for exploration of predisposing factors for excessive consumption, as well as the development of physiological, behavioral and toxicological outcomes following alcohol exposure

    Emotional reactivity to incentive downshift as a correlated response to selection of high and low alcohol preferring mice and an influencing factor on ethanol intake

    Get PDF
    Losing a job or significant other are examples of incentive loss that result in negative emotional reactions. The occurrence of negative life events is associated with increased drinking (Keyes, Hatzenbuehler, & Hasin, 2011). Further, certain genotypes are more likely to drink alcohol in response to stressful negative life events (Blomeyer et al., 2008; Covault et al., 2007). Shared genetic factors may contribute to alcohol drinking and emotional reactivity, but this relationship is not currently well understood. We used an incentive downshift paradigm to address whether emotional reactivity is elevated in mice predisposed to drink alcohol. We also investigated if ethanol drinking is influenced in High Alcohol Preferring mice that had been exposed to an incentive downshift. Incentive downshift procedures have been widely utilized to model emotional reactivity, and involve shifting a high reward group to a low reward and comparing the shifted group to a consistently rewarded control group. Here, we show that replicate lines of selectively bred High Alcohol Preferring mice exhibited larger successive negative contrast effects than their corresponding replicate Low Alcohol Preferring lines, providing strong evidence for a genetic association between alcohol drinking and susceptibility to the emotional effects of negative contrast. These mice can be used to study the shared neurological and genetic underpinnings of emotional reactivity and alcohol preference. Unexpectedly, an incentive downshift suppressed ethanol drinking immediately following an incentive downshift. This could be due to a specific effect of negative contrast on ethanol consumption or a suppressive effect on consummatory behavior in general. These data suggest that either alcohol intake does not provide the anticipated negative reinforcement, or that a single test was insufficient for animals to learn to drink following incentive downshift. However, the emotional intensity following incentive downshift provides initial evidence that this type of emotional reactivity may be a predisposing factor in alcoholism
    • …
    corecore