51 research outputs found

    Minor differences in body condition and immune status between avian influenza virus-infected and noninfected mallards: a sign of coevolution?

    Get PDF
    Wildlife pathogens can alter host fitness. Low pathogenic avian influenza virus (LPAIV) infection is thought to have negligible impacts on wild birds; however, effects of infection in free-living birds are largely unstudied. We investigated the extent to which LPAIV infection and shedding were associated with body condition and immune status in free-living mallards (Anas platyrhynchos), a partially migratory key LPAIV host species. We sampled mallards throughout the species' annual autumn LPAIV infection peak, and we classified individuals according to age, sex, and migratory strategy (based on stable hydrogen isotope analysis) when analyzing data on body mass and five indices of immune status. Body mass was similar for LPAIV-infected and noninfected birds. The degree of virus shedding from the cloaca and oropharynx was not associated with body mass. LPAIV infection and shedding were not associated with natural antibody (NAbs) and complement titers (first lines of defense against infections), concentrations of the acute phase protein haptoglobin (Hp), ratios of heterophils to lymphocytes (H:L ratio), and avian influenza virus (AIV)-specific antibody concentrations. NAbs titers were higher in LPAIV-infected males and local (i.e., short distance) migrants than in infected females and distant (i.e., long distance) migrants. Hp concentrations were higher in LPAIV-infected juveniles and females compared to infected adults and males. NAbs, complement, and Hp levels were lower in LPAIV-infected mallards in early autumn. Our study demonstrates weak associations between infection with and shedding of LPAIV and the body condition and immune status of free-living mallards. These results may support the role of mallards as asymptomatic carriers of LPAIV and raise questions about possible coevolution between virus and host

    Minor differences in body condition and immune status between avian influenza virus-infected and noninfected mallards: A sign of coevolution?

    Get PDF
    Wildlife pathogens can alter host fitness. Low pathogenic avian influenza virus (LPAIV) infection is thought to have negligible impacts on wild birds; however, effects of infection in free-living birds are largely unstudied. We investigated the extent to which LPAIV infection and shedding were associated with body condition and immune status in free-living mallards (Anas platyrhynchos), a partially migratory key LPAIV host species. We sampled mallards throughout the species' annual autumn LPAIV infection peak, and we classified individuals according to age, sex, and migratory strategy (based on stable hydrogen isotope analysis) when analyzing data on body mass and five indices of immune status. Body mass was similar for LPAIV-infected and noninfected birds. The degree of virus shedding from the cloaca and oropharynx was not associated with body mass. LPAIV infection and shedding were not associated with natural antibody (NAbs) and complement titers (first lines of defense against infections), concentrations of the acute phase protein haptoglobin (Hp), ratios of heterophils to lymphocytes (H:L ratio), and avian influenza virus (AIV)-specific antibody concentrations. NAbs titers were higher in LPAIV-infected males and local (i.e., short distance) migrants than in infected females and distant (i.e., long distance) migrants. Hp concentrations were higher in LPAIV-infected juveniles and females compared to infected adults and males. NAbs, complement, and Hp levels were lower in LPAIV-infected mallards in early autumn. Our study demonstrates weak associations between infection with and shedding of LPAIV and the body condition and immune status of free-living mallards. These results may support the role of mallards as asymptomatic carriers of LPAIV and raise questions about possible coevolution between virus and host

    The L 98-59 System: Three Transiting, Terrestrial-Size Planets Orbiting A Nearby M Dwarf

    Get PDF
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R⊕ to 1.6 R⊕. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system

    Two Young Planetary Systems around Field Stars with Ages between 20 and 320 Myr from TESS

    Get PDF
    Planets around young stars trace the early evolution of planetary systems. We report the discovery and validation of two planetary systems with ages <∼300Myr from observations by the Transiting Exoplanet Survey Satellite (TESS). The 40 V320 Myr old G star TOI-251 hosts a 2.74+0.18-0.18 mini-Neptune with a 4.94 day period. The 20-160 Myr old K star TOI-942 hosts a system of inflated Neptune-sized planets, with TOI-942b orbiting in a period of 4.32 days with a radius of 4.81+0.20-0.20 and TOI-942c orbiting in a period of 10.16 days with a radius of 5.79-0.18+0.19 Though we cannot place either host star into a known stellar association or cluster, we can estimate their ages via their photometric and spectroscopic properties. Both stars exhibit significant photometric variability due to spot modulation, with measured rotation periods of .3.5 days. These stars also exhibit significant chromospheric activity, with age estimates from the chromospheric calcium emission lines and X-ray fluxes matching that estimated from gyrochronology. Both stars also exhibit significant lithium absorption, similar in equivalent width to well-characterized young cluster members. TESS has the potential to deliver a population of young planet-bearing field stars, contributing significantly to tracing the properties of planets as a function of their age

    KELT-25 b and KELT-26 b: A Hot Jupiter and a Substellar Companion Transiting Young A Stars Observed by TESS

    Get PDF
    We present the discoveries of KELT-25 b (TIC 65412605, TOI-626.01) and KELT-26 b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A stars. The transit signals were initially detected by the KELT survey and subsequently confirmed by Transiting Exoplanet Survey Satellite (TESS) photometry. KELT-25 b is on a 4.40 day orbit around the V = 9.66 star CD-24 5016 (Teff=8280-180+440 K, M ∗ = 2.18-0.11+0.12 M o˙), while KELT-26 b is on a 3.34 day orbit around the V = 9.95 star HD 134004 (Teff = 8640-240+500 K, M ∗ = 1.93-0.16+0.14 M o˙), which is likely an Am star. We have confirmed the substellar nature of both companions through detailed characterization of each system using ground-based and TESS photometry, radial velocity measurements, Doppler tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of R P = 1.64-0.043+0.039 R J and a 3σ upper limit on the companion's mass of ∼64 M J. For KELT-26 b, we infer a planetary mass and radius of M P = 1.41-0.51+0.43MJ and R P = 1.94-0.058+0.060 R J. From Doppler tomographic observations, we find KELT-26 b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the TESS data. KELT-25 b appears to be in a well-aligned, prograde orbit, and the system is likely a member of the cluster Theia 449

    Infection, immunity, and island adaptatioon in birds

    No full text

    In ovo testosterone treatment reduces long-term survival of female pigeons : a preliminary analysis after nine years of monitoring

    No full text
    Early exposure to steroid hormones, as in the case of an avian embryo exposed yolk testosterone, can impact the biology of an individual in different ways over the course of its life. While many early-life effects of yolk testosterone have been documented, later-life effects remain poorly studied. We followed a cohort of twenty captive pigeons hatched in 2005. Half of these birds came from eggs with experimentally increased concentrations of testosterone; half came from control eggs. Preliminary results suggest non-random mortality during the birds’ first nine years of life. Hitherto, all males have survived, and control females have survived better than testosterone-treated ones. Despite inherent challenges, studies of later-life consequences of early-life exposure in longer-lived species can offer new perspectives that are precluded by studies of immediate outcomes or shorter-lived species.</p

    Capture Stress and the Bactericidal Competence of Blood and Plasma in Five Species of Tropical Birds

    No full text
    In wild birds, relatively little is known about intra- or interspecific variation in immunological capabilities, and even less is known about the effects of stress on immune function. Immunological assays adaptable to field settings and suitable for a wide variety of taxa will prove most useful for addressing these issues. We describe a novel application of an in vitro technique that measures the intrinsic bacteria-killing abilities of blood. We assessed the capacities of whole blood and plasma from free-living individuals of five tropical bird species to kill a nonpathogenic strain of E. coli before and after the birds experienced an acute stress. Killing invasive bacteria is a fundamental immune function, and the bacteria-killing assay measures constitutive, innate immunity integrated across circulating cell and protein components. Killing ability varied significantly across species, with common ground doves exhibiting the lowest levels and blue-crowned motmots exhibiting the highest levels. Across species, plasma killed bacteria as effectively as whole blood, and higher concentrations of plasma killed significantly better. One hour of acute stress reduced killing ability by up to 40%. This assay is expected to be useful in evolutionary and ecological studies dealing with physiological and immunological differences in birds
    • …
    corecore