58 research outputs found
Relation between pulse pressure and the pulsation strength in camera-based photoplethysmograms
Abstract
Camera-based photoplethysmography (cbPPG) is an innovative measuring technique that enables the remote extraction of vital signs using video cameras. Most studies in the field focus on heart rate detection while other physiological quantities are often ignored. In this work, we analyzed the relation between the pulse pressure and the pulsation strengths of cbPPG signals for 70 patients after surgery. Our results show a high correlation between the two measures (r = 0.54). Furthermore, the influence of technical and medical factors was tested. The controlled impact of these factors proved to enhance the correlation by between 9 and 27 %.</jats:p
Contact-free optical assessment of changes in the chest wall perfusion after coronary artery bypass grafting by imaging photoplethysmography
Imaging photoplethysmography (iPPG) is a contact-free monitoring of the cutaneous blood volume pulse by RGB (red-green-blue) cameras. It detects vital parameters from skin areas and is associated to cutaneous perfusion. This study investigated the use of iPPG to quantify changes in cutaneous perfusion after major surgery. Patients undergoing coronary artery bypass grafting (CABG) were scanned before surgery and in three follow-up measurements. Using an industrial-grade RGB camera and usual indoor lighting, a contact-free imaging plethysmogram from the chest was obtained. Changes of the iPPG signal strength were evaluated in view of both the operation itself as well as the unilateral preparation of the internal thoracic artery (ITA) for coronary artery grafting, which is the main blood source of the chest wall. iPPG signal strength globally decreased after surgery and recovered partially during the follow up measurements. The ITA preparation led to a deeper decrease and an attenuated recovery of the iPPG signal strength compared to the other side of the chest wall. These results comply with the expected changes of cutaneous perfusion after CABG using an ITA graft. iPPG can be used to assess cutaneous perfusion and its global changes after major surgery as well as its local changes after specific surgical procedures
Infrared Thermographic Imaging of Chest Wall Perfusion in Patients Undergoing Coronary Artery Bypass Grafting
Coronary artery disease represents a leading cause of death worldwide, to which the coronary artery bypass graft (CABG) is the main method of treatment in advanced multiple vessel disease. The use of the internal mammary artery (IMA) as a graft insures an improved long-term survival, but impairment of chest wall perfusion often leads to surgical site infection and increased morbidity and mortality. Infrared thermography (IRT) has established itself in the past decades as a non-invasive diagnostic technique. The applications vary from veterinary to human medicine and from head to toe. In this study we used IRT in 42 patients receiving CABG to determine the changes in skin surface temperature preoperatively, two hours, 24 h and 6 days after surgery. The results showed a significant and independent drop of surface temperature 2 h after surgery on the whole surface of the chest wall, as well as a further reduction on the left side after harvesting the IMA. The temperature returned to normal after 24 h and remained so after 6 days. The study has shown that IRT is sufficiently sensitive to demonstrate the known, subtle reduction in chest wall perfusion associated with IMA harvesting
The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2.
Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients' brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling
Rivaroxaban compared with low-dose aspirin in individuals with type 2 diabetes and high cardiovascular risk: a randomised trial to assess effects on endothelial function, platelet activation and vascular biomarkers
AIMS/HYPOTHESIS
Individuals with type 2 diabetes mellitus and subclinical inflammation have stimulated coagulation, activated platelets and endothelial dysfunction. Recent studies with the direct factor Xa inhibitor rivaroxaban in combination with low-dose aspirin demonstrated a significant reduction of major cardiovascular events, especially in individuals with type 2 diabetes and proven cardiovascular disease. Therefore, we asked the question of whether treatment with rivaroxaban could influence endothelial function, arterial stiffness and platelet activation.
METHODS
We conducted a multi-centre, prospective, randomised, open-label trial in 179 participants with type 2 diabetes (duration 2-20 years), subclinical inflammation (high-sensitivity C-reactive protein 2-10 mg/l) and at least two traits of the metabolic syndrome to compare the effects of the direct factor Xa inhibitor rivaroxaban (5 mg twice daily) vs aspirin (100 mg every day) on endothelial function (assessed by forearm occlusion plethysmography), skin blood flow (assessed by laser-Doppler fluxmetry), arterial stiffness (assessed by pulse wave velocity) and serum biomarkers of endothelial function and inflammation. Furthermore, we investigated phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in platelets, the concentration of platelet-derived microparticles (PMPs) and the effects of isolated PMPs on HUVEC proliferation in vitro.
RESULTS
Rivaroxaban treatment for 20 weeks (n = 89) resulted in a significant improvement of post-ischaemic forearm blood flow (3.6 ± 4.7 vs 1.0 ± 5.2 ml/100 ml, p = 0.004), a numerically increased skin blood flow and reduced soluble P-Selectin plasma level vs aspirin. We did not find significant differences of arterial stiffness or further biomarkers. Neither rivaroxaban nor aspirin influenced VASP phosphorylation of platelets. The number of PMPs increased significantly with both rivaroxaban (365.2 ± 372.1 vs 237.4 ± 157.1 μl, p = 0.005) and aspirin (266.0 ± 212.7 vs 201.7 ± 162.7 μl, p = 0.021). PMPs of rivaroxaban-treated participants stimulated HUVEC proliferation in vitro compared with aspirin. Rivaroxaban was associated with a higher number of bleeding events.
CONCLUSIONS/INTERPRETATION
Our findings indicate that the direct factor Xa inhibitor rivaroxaban improved endothelial function in participants with type 2 diabetes and subclinical inflammation but also increased the risk of bleeding.
TRIAL REGISTRATION
ClinicalTrials.gov NCT02164578.
FUNDING
The study was supported by a research grant from Bayer Vital AG, Germany
Relation between pulse pressure and the pulsation strength in camera-based photoplethysmograms
Camera-based photoplethysmography (cbPPG) is an innovative measuring technique that enables the remote extraction of vital signs using video cameras. Most studies in the field focus on heart rate detection while other physiological quantities are often ignored. In this work, we analyzed the relation between the pulse pressure and the pulsation strengths of cbPPG signals for 70 patients after surgery. Our results show a high correlation between the two measures (r = 0.54). Furthermore, the influence of technical and medical factors was tested. The controlled impact of these factors proved to enhance the correlation by between 9 and 27 %
Assessment of blind source separation techniques for video-based cardiac pulse extraction
Blind source separation (BSS) aims at separating useful signal content from distortions. In the contactless acquisition of vital signs by means of the camera-based photoplethysmogram (cbPPG), BSS has evolved the most widely used approach to extract the cardiac pulse. Despite its frequent application, there is no consensus about the optimal usage of BSS and its general benefit. This contribution investigates the performance of BSS to enhance the cardiac pulse from cbPPGs in dependency to varying input data characteristics. The BSS input conditions are controlled by an automated spatial preselection routine of regions of interest. Input data of different characteristics (wavelength, dominant frequency, and signal quality) from 18 postoperative cardiovascular patients are processed with standard BSS techniques, namely principal component analysis (PCA) and independent component analysis (ICA). The effect of BSS is assessed by the spectral signal-tonoise ratio (SNR) of the cardiac pulse. The preselection of cbPPGs, appears beneficial providing higher SNR compared to standard cbPPGs. Both, PCA and ICA yielded better outcomes by using monochrome inputs (green wavelength) instead of inputs of different wavelengths. PCA outperforms ICA for more homogeneous input signals. Moreover, for high input SNR, the application of ICA using standard contrast is likely to decrease the SNR
Assessment of source separation techniques to extract vital parameters from videos
Publication in the conference proceedings of EUSIPCO, Nice, France, 201
- …