143 research outputs found

    PGC1β activates an antiangiogenic program to repress neoangiogenesis in muscle ischemia

    Get PDF
    Revascularization of ischemic skeletalmuscle is governed by a balance between pro- and antiangiogenic factors in multiple cell types but particularly in myocytes and endothelial cells. Whereas the regulators of proangiogenic factors are well defined (e.g.,hypoxia-inducible factor [HIF]), the transcriptional pathways encoding antiangiogenic factors remain unknown. We report that the transcriptional cofactor PGC1β drives an antiangiogenic gene program in muscle and endothelial cells. PGC1β transcriptionally represses proangiogenic genes (e.g., Vegfc, Vegfd, Pdgfb, Angpt1, Angpt2, Fgf1, and Fgf2) and induces antiangiogenic genes (e.g., Thbs1, Thbs2, Angstat, Pedf, and Vash1). Consequently, musclespecific PGC1β overexpression impairs muscle revascularization in ischemia and PGC1β deletion enhances it. PGC1β overexpression or deletion in endothelial cells also blocks or stimulates angiogenesis, respectively. PGC1β stimulates the antiangiogenic genes partly by coactivating COUP-TFI. Furthermore, roangiogenic stimuli such as hypoxia, hypoxia-mimetic agents, and ischemia decrease PGC1β expression in a HIF-dependent manner. PGC1β is an antiangiogenic transcriptional switch that could be targeted for therapeutic angiogenesis

    Platelet biology in regenerative medicine of skeletal muscle

    Get PDF
    Platelet‐based applications such as platelet‐rich plasma (PRP) and platelet releasate have gained unprecedented attention in regenerative medicine across a variety of tissues as of late. The rationale behind utilizing PRP originates in the delivery of key cytokines and growth factors from α‐granules to the targeted area, which in turn act as cell cycle regulators and promote the healing process across a variety of tissues. The aim of the present review is to assimilate current experimental evidence on the role of platelets as biomaterials in tissue regeneration, particularly in skeletal muscle, by integrating findings from human, animal and cell studies. This review is composed of 3 parts: firstly, we review key aspects of platelet biology that precede the preparation and use of platelet‐related applications for tissue regeneration. Secondly, we critically discuss relevant evidence on platelet‐mediated regeneration in skeletal muscle focusing on findings from (i) clinical trials, (ii) experimental animal studies and (iii) cell culture studies; and thirdly, we discuss the application of platelets in the regeneration of several other tissues including tendon, bone, liver, vessels and nerve. Finally, we review key technical variations in platelet preparation that may account for the large discrepancy in outcomes from different studies. This review provides an up‐to‐date reference tool for biomedical and clinical scientists involved in platelet‐mediated tissue regenerative applications

    Double rupture of interventricular septum and free wall of the left ventricle, as a mechanical complication of acute myocardial infarction: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Cardiac ruptures following acute myocardial infarction include rupture of the left ventricle free-wall, ventricular septal defects, and papillary muscle rupture. Double myocardial rupture is a rare complication of acute myocardial infarction (0.3 %) and the report of such cases is exclusively limited to a small series of autopsy studies.</p> <p>Case presentation</p> <p>In this report we present the unusual case of a 70-year-old woman with acute anteroseptal myocardial infarction, which was complicated by a combined rupture of the interventricular septum near the apex, and the free wall of the left ventricle with concomitant formation of a pseudoaneurysm. The double myocardial rupture was accidentally discovered 10 days later with echocardiography, when the patient, complaining only of mild exertional dyspnea, was hospitalized for a scheduled coronary angiography. The patient underwent successful surgical correction of the double myocardial rupture along with by-pass grafting.</p> <p>Conclusion</p> <p>This report highlights the importance of comprehensive noninvasive predischarge diagnostic evaluation of all postinfarct patients, since serious and potentially life-threatening complications might have not been suspected on clinical grounds.</p

    Prenatal muscle development in a mouse model for the secondary dystroglycanopathies

    Get PDF
    The defective glycosylation of α-dystroglycan is associated with a group of muscular dystrophies that are collectively referred to as the secondary dystroglycanopathies. Mutations in the gene encoding fukutin-related protein (FKRP) are one of the most common causes of secondary dystroglycanopathy in the UK and are associated with a wide spectrum of disease. Whilst central nervous system involvement has a prenatal onset, no studies have addressed prenatal muscle development in any of the mouse models for this group of diseases. In view of the pivotal role of α-dystroglycan in early basement membrane formation, we sought to determine if the muscle formation was altered in a mouse model of FKRP-related dystrophy
    corecore