9 research outputs found

    Long-term vascular access ports as a means of sedative administration in a rodent fMRI survival model

    Get PDF
    The purpose of this study is to develop a rodent functional magnetic resonance imaging (fMRI) survival model with the use of heparin-coated vascular access devices. Such a model would ease the administration of sedative agents, reduce the number of animals required in survival experiments and eliminate animal-to-animal variability seen in previous designs. Seven male Sprague-Dawley rats underwent surgical placement of an MRI-compatible vascular access port, followed by implantable electrode placement on the right median nerve. Functional MRI during nerve stimulation and resting-state functional connectivity MRI (fcMRI) were performed at times 0, 2, 4, 8 and 12 weeks postoperatively using a 9.4 T scanner. Anesthesia was maintained using intravenous dexmedetomidine and reversed using atipamezole. There were no fatalities or infectious complications during this study. All vascular access ports remained patent. Blood oxygen level dependent (BOLD) activation by electrical stimulation of the median nerve using implanted electrodes was seen within the forelimb sensory region (S1FL) for all animals at all time points. The number of activated voxels decreased at time points 4 and 8 weeks, returning to a normal level at 12 weeks, which is attributed to scar tissue formation and resolution around the embedded electrode. The applications of this experiment extend far beyond the scope of peripheral nerve experimentation. These vascular access ports can be applied to any survival MRI study requiring repeated medication administration, intravenous contrast, or blood sampling

    Improved Animal Model for Vibration Injury Study

    Get PDF
    Hand-Arm Vibration Syndrome is a debilitating condition that affects millions of power-tool users in the  U.S. Research into its etiology has been hampered by deficiencies in animal models used for vibration studies.  Our objective was to design an animal vibration injury model that: 1) vibrates only the studied limb, not  the body; and 2) avoids anaesthesia, thus allowing purer focus on physiological effects of vibration while  reducing pain and distress for the animals, thereby enhancing their well-being. We compared advantages  and disadvantages of several models, studying body temperature, body weight, tissue perfusion, vascular  pathohistology, and general animal condition. Our model uses an apparatus that limits vibration to one  body part and a specially designed cage that minimizes animal stress and suffering, eliminating the need for  anaesthesia. It is ideal for the study of vibration injury, providing tissue damaged purely by vibration that  can be used for pathohistology and biochemical study.

    Serological Tests for Diagnosis and Staging of Hand–Arm Vibration Syndrome (HAVS)

    No full text
    The current gold standard for the diagnosis and staging of hand–arm vibration syndrome (HAVS) is the Stockholm workshop scale, which is subjective and relies on the patient’s recalling ability and honesty. Therefore, great potentials exist for diagnostic and staging errors. The purpose of this study is to determine if objective serum tests, such as levels of soluble thrombomodulin (sTM) and soluble intercellular adhesion molecule-1 (sICAM-1), may be used in the diagnosis and staging of HAVS. Twenty two nonsmokers were divided into a control group (n = 11) and a vibration group (n = 11). The control group included subjects without history of frequent vibrating tool use. The vibration group included construction workers with average vibrating tool use of 12.2 years. All were classified according to the Stockholm workshop scale (SN, sensorineural symptoms; V, vascular symptoms. SN0, no numbness; SN1, intermittent numbness; SN2, reduced sensory perception; SN3, reduced tactile discrimination; V0, no vasospasmic attacks; V1, intermittent vasospasm involving distal phalanges; V2, intermittent vasospasm extending to middle phalanges; V3, intermittent vasospasm extending to proximal phalanges; V4, skin atrophy/necrosis). All control subjects were SN0 V0. Seven out of 11 vibration subjects were SN1 V1, and 4 out of 11 were SN1 V2. A 10-cm3 sample of venous blood was collected from each subject. The sTM and sICAM-1 levels were determined by enzyme-linked immunosorbent assay. The mean plasma sTM levels were as follows: control group = 2.93 ± 0.47 ng/ml, and vibration group = 3.61 ± 0.24 ng/ml. The mean plasma sICAM-1 levels were as follows: control group = 218.8 ± 54.1 ng/ml, and vibration group = 300.3 ± 53.2 ng/ml. The sTM and sICAM-1 differences between control and vibration groups were statistically significant (p < 0.0002 and p < 0.001, respectively). When reference ranges provided by Hemostasis Reference Lab were used as cut-off values, all sTM and sICAM-1 levels were within range, except three vibration individuals (27%) who had sICAM-1 levels greater than the reference range. This was not statistically significant (p = 0.08). When subjects were compared based on the Stockholm workshop scale, mean plasma sTM levels were SN0 V0 group = 2.93 ± 0.47 ng/ml, SN1 V1 group = 3.59 ± 0.25 ng/ml, and SN1 V2 group = 3.65 ± 0.27 ng/ml, and mean plasma sICAM-1 levels were SN0 V0 = 219 ± 54.1 ng/ml, SN1 V1 = 275 ± 33.5 ng/ml, and SN1 V2 = 345 ± 54.6 ng/ml. The difference in sTM level among the three groups was statistically significant (p < 0.001). The difference in sICAM-1 level among the three groups was also statistically significant (p < 0.002). The sTM and sICAM-1 levels are statistically higher in subjects with HAVS, with levels proportional to the disease severity. However, large population studies are needed to determine the “real-life” standard reference ranges for sTM and sICAM-1

    Detergent-free Decellularized Nerve Grafts for Long-gap Peripheral Nerve Reconstruction

    No full text
    Background: Long-gap peripheral nerve defects arising from tumor, trauma, or birth-related injuries requiring nerve reconstruction are currently treated using nerve autografts and nerve allografts. Autografts are associated with limited supply and donor-site morbidity. Allografts require administration of transient immunosuppressants, which has substantial associated risks. To overcome these limitations, we investigated the use of detergent-free decellularized nerve grafts to reconstruct long-gap nerve defects in a rodent model and compared it with existing detergent processing techniques. Methods: Nerve grafts were harvested from the sciatic nerves of 9 donor rats. Twenty-four recipient rats were divided into 4 groups (6 animals per group): (1) nerve grafts (NG, positive control), (2) detergent-free decellularized (DFD) grafts, (3) detergent decellularized grafts, and (4) silicone tube conduits (negative control). Each recipient rat had a 3.5-cm graft or conduit sutured across a sciatic nerve transection injury. All animals were harvested at 12 weeks postimplantation for functional muscle analysis and nerve histomorphometry. Results: Histomorphometry results indicated maximum growth in NG when compared with other groups. DFD and detergent decellularized groups showed comparable regeneration at 12 weeks. Silicone tube group showed no regeneration as expected. Muscle force data indicated functional recovery in NG and DFD groups only. Conclusions: This study describes a detergent-free nerve decellularization technique for reconstruction of long-gap nerve injuries. We compared DFD grafts with an established detergent processing technique and found that DFD nerve grafts are successful in promoting regeneration across long-gap peripheral nerve defects as an alternative to existing strategies

    The preventive effects of apolipoprotein mimetic D-4F from vibration injury—experiment in rats

    No full text
    Hand-arm vibration syndrome (HAVS) is a debilitating sequela of neurological and vascular injuries caused by prolonged occupational exposure to hand-transmitted vibration. Our previous study demonstrated that short-term exposure to vibration can induce vasoconstriction and endothelial cell damage in the ventral artery of the rat's tail. The present study investigated whether pretreatment with D-4F, an apolipoprotein A-1 mimetic with known anti-oxidant and vasodilatory properties, prevents vibration-induced vasoconstriction, endothelial cell injury, and protein nitration. Rats were injected intraperitoneally with 3 mg/kg D-4F at 1 h before vibration of the tails for 4 h/day at 60 Hz, 49 m/s2 r.m.s. acceleration for either 1 or 3 days. Vibration-induced endothelial cell damage was examined by light microscopy and nitrotyrosine immunoreactivity (a marker for free radical production). One and 3-day vibration produced vasoconstriction and increased nitrotyrosine. Preemptive treatment with D-4F prevented these negative changes. These findings suggest that D-4F may be useful in the prevention of HAVS

    Intraoperative Electrophysiological Studies to Predict the Efficacy of Neurolysis After Nerve Injury—Experiment in Rats

    No full text
    Compound muscle action potentials (CMAPs) can be used to analyze injury and recovery of nerve. This standardized study evaluates the value of CMAP analysis in predicting the long-term efficacy of neurolysis. CMAP amplitude is also used to determine the optimal extent of neurolysis. The left peroneal nerves of 30 rats were crushed. CMAPs were recorded for both crushed (left) and control (right) nerves. Fifteen rats underwent neurolysis 3 months post crush injury; the remaining 15 were sham controls and did not undergo neurolysis. CMAP measurements were taken after: (1) release of the nerve from the fascia, (2) opening the epineurium, and (3) opening the perineurium. At 3 months post crush injury, opening the epineurium resulted in a statistically significant increase in CMAP. CMAP increase with perineurial neurolysis was greater than with fascial release of the nerve but was not statistically different from that of epineurial release. At 5 months post crush injury, recovery of crushed nerves that underwent neurolysis was 90% and significantly less at 70.5% in rats not treated with neurolysis, according to CMAP analysis. Two conclusions can be made from this study. First, intraoperative neurophysiologic studies can monitor the immediate results of neurolysis and predict long-term results in the injured nerve. Second, epineurotomy is important in neurolysis, improves the function of the nerve, less invasive, and a slightly more effective technique than perineurotomy
    corecore