6 research outputs found

    A Detoxification Enzyme for Apis mellifera Newly Characterized by Recombinant Expression: 10-Formyl Tetrahydrofolate Dehydrogenase

    Get PDF
    Honeybees are important managed pollinators that perform important ecological and economic functions. In recent decades, the obligate ectoparasite Varroa destructor severely affected survival of honeybees as it either feeds on hemolymph and fat bodies or acts as a vector for viruses. A common treatment against the varroa mite is formic acid, which has been used for many years by beekeepers. This treatment is known to be effective, but the therapeutic index is very narrow. Many beekeepers report negative effects of formic acid on bees, which include damage to brood, worker bee mortality, and queen loss. Little is yet known about the molecular mechanisms of formic acid detoxification in honeybees. Our previous study shows the upregulation of predicted 10-formyl tetrahydrofolate dehydrogenase (10-FTHFDH) transcripts in honeybees exposed to formic acid. Here, the predicted honeybee-specific 10-FTHFDH is recombinantly expressed, and its hydrolase and dehydrogenase activities are investigated. As a result, the enzyme shows similar dehydrogenase activity in comparison to known 10-FTHFDHs. This study provides further knowledge to better understand the detoxification mechanisms of formic acid in Apis mellifera

    The Active Site of the Enzyme 10-Formyl-THFDH in the Honey Bee Apis mellifera - A Key Player in Formic Acid Detoxification

    Get PDF
    Honey bees are important managed pollinators that fulfill important ecological and economic functions. In recent decades, the obligate ectoparasite Varroa destructor severely affected the survival of honey bees, as it weakened them by different means. A common treatment against V. destructor is formic acid fumigation, which has been used for decades by beekeepers across the world. This treatment is known to be effective, but many beekeepers report adverse effects of formic acid on bees, which include damage to the brood, worker bee mortality, and queen loss. Little is known about the molecular mechanisms of formic acid detoxification in honey bees. Recently, we reported upregulation of the bee enzyme, 10-formyl-THFDH, under formic acid fumigation. Here, the active site of this enzyme is characterized by an interdisciplinary approach combining homology modeling and protein mutagenesis. In addition, the limitations of the 3D protein structure prediction program AlphaFold2 are shown in regard to docking studies. This study provides a more thorough understanding of the molecular detoxification mechanisms of formic acid in Apis mellifera

    Excluding arbuscular mycorrhiza lowers variability in soil respiration but slows down recovery from perturbations

    Get PDF
    The role of mutualisms in mediating temporal stability in an ecosystem has been debated extensively. Here, we focus on how a ubiquitous mutualism, arbuscular mycorrhiza, influences temporal stability of a key ecosystem process, ecosystem respiration. We discriminated between two forms of temporal stability, temporal variability and resilience, and hypothesized that excluding arbuscular mycorrhiza would be detrimental for both of them. We analyzed a set of 10 parallel manipulation experiments to assess how excluding arbuscular mycorrhiza modulates temporal stability compared to other common experimental factors. We quantified the temporal variability of ecosystem respiration and the resilience to experimental perturbations (i.e., pulses, stresses, and a disturbance) following manipulations of mycorrhizal state. We observed lower temporal variability in the absence of arbuscular mycorrhiza in discord to our main hypothesis. Manipulating arbuscular mycorrhiza had a stronger impact on temporal variability than the pulse (application of urea), the stress (addition of salt), and a disturbance (experimental defoliation) but weaker than excluding primary producers or comparing across different plant species. Resilience to experimental perturbations declined in non‐mycorrhizal microcosms. We present an empirical study on how mutualisms impact temporal stability. Arbuscular mycorrhiza differentially alters temporal variability and resilience, highlighting that generalizing across different forms of temporal stability could be misleading

    Bee‑safe peptidomimetic acaricides achieved by comparative genomics

    Get PDF
    The devastating Varroa mite (Varroa destructor Anderson and Trueman) is an obligatory ectoparasite of the honey bee, contributing to significant colony losses in North America and throughout the world. The limited number of conventional acaricides to reduce Varroa mites and prevent disease in honey bee colonies is challenged with wide-spread resistance and low target-site selectivity. Here, we propose a biorational approach using comparative genomics for the development of honey beesafe and selective acaricides targeting the Varroa mite-specific neuropeptidergic system regulated by proctolin, which is lacking in the honey bee. Proctolin is a highly conserved pentapeptide RYLPT (Arg-Tyr-Leu-Pro-Thr) known to act through a G protein-coupled receptor to elicit myotropic activity in arthropod species. A total of 33 different peptidomimetic and peptide variants were tested on the Varroa mite proctolin receptor. Ligand docking model and mutagenesis studies revealed the importance of the core aromatic residue Tyr2 in the proctolin ligand. Peptidomimetics were observed to have significant oral toxicity leading to the paralysis and death of Varroa mites, while there were no negative effects observed for honey bees. We have demonstrated that a taxon-specific physiological target identified by advanced genomics information offers an opportunity to develop Varroa miteselective acaricides, hence, expedited translational processes

    The Active Site of the Enzyme 10-Formyl-THFDH in the Honey Bee <i>Apis mellifera</i>—A Key Player in Formic Acid Detoxification

    Get PDF
    Honey bees are important managed pollinators that fulfill important ecological and economic functions. In recent decades, the obligate ectoparasite Varroa destructor severely affected the survival of honey bees, as it weakened them by different means. A common treatment against V. destructor is formic acid fumigation, which has been used for decades by beekeepers across the world. This treatment is known to be effective, but many beekeepers report adverse effects of formic acid on bees, which include damage to the brood, worker bee mortality, and queen loss. Little is known about the molecular mechanisms of formic acid detoxification in honey bees. Recently, we reported upregulation of the bee enzyme, 10-formyl-THFDH, under formic acid fumigation. Here, the active site of this enzyme is characterized by an interdisciplinary approach combining homology modeling and protein mutagenesis. In addition, the limitations of the 3D protein structure prediction program AlphaFold2 are shown in regard to docking studies. This study provides a more thorough understanding of the molecular detoxification mechanisms of formic acid in Apis mellifera
    corecore