161 research outputs found
Bootstrap-Based Inference for Cube Root Asymptotics
This paper proposes a valid bootstrap-based distributional approximation for
M-estimators exhibiting a Chernoff (1964)-type limiting distribution. For
estimators of this kind, the standard nonparametric bootstrap is inconsistent.
The method proposed herein is based on the nonparametric bootstrap, but
restores consistency by altering the shape of the criterion function defining
the estimator whose distribution we seek to approximate. This modification
leads to a generic and easy-to-implement resampling method for inference that
is conceptually distinct from other available distributional approximations. We
illustrate the applicability of our results with four examples in econometrics
and machine learning
Alternative Asymptotics and the Partially Linear Model with Many Regressors
Non-standard distributional approximations have received considerable
attention in recent years. They often provide more accurate approximations in
small samples, and theoretical improvements in some cases. This paper shows
that the seemingly unrelated "many instruments asymptotics" and "small
bandwidth asymptotics" share a common structure, where the object determining
the limiting distribution is a V-statistic with a remainder that is an
asymptotically normal degenerate U-statistic. We illustrate how this general
structure can be used to derive new results by obtaining a new asymptotic
distribution of a series estimator of the partially linear model when the
number of terms in the series approximation possibly grows as fast as the
sample size, which we call "many terms asymptotics"
Inference in Linear Regression Models with Many Covariates and Heteroskedasticity
The linear regression model is widely used in empirical work in Economics,
Statistics, and many other disciplines. Researchers often include many
covariates in their linear model specification in an attempt to control for
confounders. We give inference methods that allow for many covariates and
heteroskedasticity. Our results are obtained using high-dimensional
approximations, where the number of included covariates are allowed to grow as
fast as the sample size. We find that all of the usual versions of Eicker-White
heteroskedasticity consistent standard error estimators for linear models are
inconsistent under this asymptotics. We then propose a new heteroskedasticity
consistent standard error formula that is fully automatic and robust to both
(conditional)\ heteroskedasticity of unknown form and the inclusion of possibly
many covariates. We apply our findings to three settings: parametric linear
models with many covariates, linear panel models with many fixed effects, and
semiparametric semi-linear models with many technical regressors. Simulation
evidence consistent with our theoretical results is also provided. The proposed
methods are also illustrated with an empirical application
Optimal Bandwidth Choice for Robust Bias Corrected Inference in Regression Discontinuity Designs
Modern empirical work in Regression Discontinuity (RD) designs often employs
local polynomial estimation and inference with a mean square error (MSE)
optimal bandwidth choice. This bandwidth yields an MSE-optimal RD treatment
effect estimator, but is by construction invalid for inference. Robust bias
corrected (RBC) inference methods are valid when using the MSE-optimal
bandwidth, but we show they yield suboptimal confidence intervals in terms of
coverage error. We establish valid coverage error expansions for RBC confidence
interval estimators and use these results to propose new inference-optimal
bandwidth choices for forming these intervals. We find that the standard
MSE-optimal bandwidth for the RD point estimator is too large when the goal is
to construct RBC confidence intervals with the smallest coverage error. We
further optimize the constant terms behind the coverage error to derive new
optimal choices for the auxiliary bandwidth required for RBC inference. Our
expansions also establish that RBC inference yields higher-order refinements
(relative to traditional undersmoothing) in the context of RD designs. Our main
results cover sharp and sharp kink RD designs under conditional
heteroskedasticity, and we discuss extensions to fuzzy and other RD designs,
clustered sampling, and pre-intervention covariates adjustments. The
theoretical findings are illustrated with a Monte Carlo experiment and an
empirical application, and the main methodological results are available in
\texttt{R} and \texttt{Stata} packages
On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference
Nonparametric methods play a central role in modern empirical work. While
they provide inference procedures that are more robust to parametric
misspecification bias, they may be quite sensitive to tuning parameter choices.
We study the effects of bias correction on confidence interval coverage in the
context of kernel density and local polynomial regression estimation, and prove
that bias correction can be preferred to undersmoothing for minimizing coverage
error and increasing robustness to tuning parameter choice. This is achieved
using a novel, yet simple, Studentization, which leads to a new way of
constructing kernel-based bias-corrected confidence intervals. In addition, for
practical cases, we derive coverage error optimal bandwidths and discuss
easy-to-implement bandwidth selectors. For interior points, we show that the
MSE-optimal bandwidth for the original point estimator (before bias correction)
delivers the fastest coverage error decay rate after bias correction when
second-order (equivalent) kernels are employed, but is otherwise suboptimal
because it is too "large". Finally, for odd-degree local polynomial regression,
we show that, as with point estimation, coverage error adapts to boundary
points automatically when appropriate Studentization is used; however, the
MSE-optimal bandwidth for the original point estimator is suboptimal. All the
results are established using valid Edgeworth expansions and illustrated with
simulated data. Our findings have important consequences for empirical work as
they indicate that bias-corrected confidence intervals, coupled with
appropriate standard errors, have smaller coverage error and are less sensitive
to tuning parameter choices in practically relevant cases where additional
smoothness is available
A Random Attention Model
This paper illustrates how one can deduce preference from observed choices
when attention is not only limited but also random. In contrast to earlier
approaches, we introduce a Random Attention Model (RAM) where we abstain from
any particular attention formation, and instead consider a large class of
nonparametric random attention rules. Our model imposes one intuitive
condition, termed Monotonic Attention, which captures the idea that each
consideration set competes for the decision-maker's attention. We then develop
revealed preference theory within RAM and obtain precise testable implications
for observable choice probabilities. Based on these theoretical findings, we
propose econometric methods for identification, estimation, and inference of
the decision maker's preferences. To illustrate the applicability of our
results and their concrete empirical content in specific settings, we also
develop revealed preference theory and accompanying econometric methods under
additional nonparametric assumptions on the consideration set for binary choice
problems. Finally, we provide general purpose software implementation of our
estimation and inference results, and showcase their performance using
simulations
Regression Discontinuity Designs Using Covariates
We study regression discontinuity designs when covariates are included in the
estimation. We examine local polynomial estimators that include discrete or
continuous covariates in an additive separable way, but without imposing any
parametric restrictions on the underlying population regression functions. We
recommend a covariate-adjustment approach that retains consistency under
intuitive conditions, and characterize the potential for estimation and
inference improvements. We also present new covariate-adjusted mean squared
error expansions and robust bias-corrected inference procedures, with
heteroskedasticity-consistent and cluster-robust standard errors. An empirical
illustration and an extensive simulation study is presented. All methods are
implemented in \texttt{R} and \texttt{Stata} software packages
Binscatter Regressions
We introduce the \texttt{Stata} (and \texttt{R}) package \textsf{Binsreg},
which implements the binscatter methods developed in
\citet*{Cattaneo-Crump-Farrell-Feng_2019_Binscatter}. The package includes the
commands \texttt{binsreg}, \texttt{binsregtest}, and \texttt{binsregselect}.
The first command (\texttt{binsreg}) implements binscatter for the regression
function and its derivatives, offering several point estimation, confidence
intervals and confidence bands procedures, with particular focus on
constructing binned scatter plots. The second command (\texttt{binsregtest})
implements hypothesis testing procedures for parametric specification and for
nonparametric shape restrictions of the unknown regression function. Finally,
the third command (\texttt{binsregselect}) implements data-driven number of
bins selectors for binscatter implementation using either quantile-spaced or
evenly-spaced binning/partitioning. All the commands allow for covariate
adjustment, smoothness restrictions, weighting and clustering, among other
features. A companion \texttt{R} package with the same capabilities is also
available
- …