637 research outputs found

    Title registration for a systematic review: Access to electricity for improving health, education and welfare in low- and middle-income countries: a systematic review

    Get PDF
    As of 2013, about 1.2 billion people or about one-sixth of the world’s population and mostly poor, lack access to electricity.1 The majority of people without access to electricity are concentrated in rural areas (about 83%).2 The case for energy as a key driver of economic activities is well documented in available literature (Khandker, Barnes, & Samad, 2012). Energy services are considered important for productivity, income, health, education, potable water and communication services (United Nations Development Programme [UNDP], 2005). The global population without access to electricity is concentrated in Sub-Saharan Africa, South Asia, and to a lesser extent in East Asia and the Pacific. In addition to the population that does not have access to electricity, up to a billion people, especially in developing countries, are subject to unreliable and low quality of power supply resulting in outages and brownouts and therefore, reduced benefits from electricity use. Even where electricity is within reach, inability to pay for an electricity connection and ongoing consumption is a significant barrier for many. Low connection rates are particularly prevalent among poorer households. The World Bank Group made a first attempt at investigating the welfare gains associated with electricity access in 2008 (IEG, 2008). This study proposes to update and expand the knowledge on the topic through a systematic review of impact evaluations that have addressed the linkage between access to electricity and health, education and welfare outcomes

    Influence of Surface Modified MWCNTs on the Mechanical, Electrical and Thermal Properties of Polyimide Nanocomposites

    Get PDF
    Polyamic acid, the precursor of polyimide, was used for the preparation of polyimide/multiwalled carbon nanotubes (MWCNTs) nanocomposite films by solvent casting technique. In order to enhance the chemical compatibility between polyimide matrix and MWCNTs, the latter was surface modified by incorporating acidic and amide groups by chemical treatment with nitric acid and octadecylamine (C18H39N), respectively. While the amide-MWCNT/polyimide composite shows higher mechanical properties at low loadings (<3 wt%), the acid-MWCNT/polyimide composites perform better at higher loadings (5 wt%). The tensile strength (TS) and the Young’s modulus (YM) values of the acid-MWCNT/polyimide composites at 5 wt% MWCNT loadings was 151 and 3360 MPa, respectively, an improvement of 54% in TS and 35% in YM over the neat polyimide film (TS = 98 MPa; YM = 2492 MPa). These MWCNT-reinforced composites show remarkable improvement in terms of thermal stability as compared to that for pure polyimide film. The electrical conductivity of 5 wt% acid modified MWCNTs/polyimide nanocomposites improved to 0.94 S cm−1(6.67 × 10−18 S cm−1for pure polyimide) the maximum achieved so far for MWCNT-polyimide composites

    Challenges and opportunities associated with waste management in India

    Get PDF
    India faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Current systems in India cannot cope with the volumes of waste generated by an increasing urban population, and this impacts on the environment and public health. The challenges and barriers are significant, but so are the opportunities. This paper reports on an international seminar on ‘Sustainable solid waste management for cities: opportunities in South Asian Association for Regional Cooperation (SAARC) countries’ organized by the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute and the Royal Society. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. The potential for energy generation from landfill via methane extraction or thermal treatment is a major opportunity, but a key barrier is the shortage of qualified engineers and environmental professionals with the experience to deliver improved waste management systems in India

    Mortality after admission for acute myocardial infarction in Aboriginal and non-Aboriginal people in New South Wales, Australia: a multilevel data linkage study

    Get PDF
    Background - Heart disease is a leading cause of the gap in burden of disease between Aboriginal and non-Aboriginal Australians. Our study investigated short- and long-term mortality after admission for Aboriginal and non-Aboriginal people admitted with acute myocardial infarction (AMI) to public hospitals in New South Wales, Australia, and examined the impact of the hospital of admission on outcomes. Methods - Admission records were linked to mortality records for 60047 patients aged 25–84 years admitted with a diagnosis of AMI between July 2001 and December 2008. Multilevel logistic regression was used to estimate adjusted odds ratios (AOR) for 30- and 365-day all-cause mortality. Results - Aboriginal patients admitted with an AMI were younger than non-Aboriginal patients, and more likely to be admitted to lower volume, remote hospitals without on-site angiography. Adjusting for age, sex, year and hospital, Aboriginal patients had a similar 30-day mortality risk to non-Aboriginal patients (AOR: 1.07; 95% CI 0.83-1.37) but a higher risk of dying within 365 days (AOR: 1.34; 95% CI 1.10-1.63). The latter difference did not persist after adjustment for comorbid conditions (AOR: 1.12; 95% CI 0.91-1.38). Patients admitted to more remote hospitals, those with lower patient volume and those without on-site angiography had increased risk of short and long-term mortality regardless of Aboriginal status. Conclusions - Improving access to larger hospitals and those with specialist cardiac facilities could improve outcomes following AMI for all patients. However, major efforts to boost primary and secondary prevention of AMI are required to reduce the mortality gap between Aboriginal and non-Aboriginal people

    Thermodynamic analysis of the Quantum Critical behavior of Ce-lattice compounds

    Full text link
    A systematic analysis of low temperature magnetic phase diagrams of Ce compounds is performed in order to recognize the thermodynamic conditions to be fulfilled by those systems to reach a quantum critical regime and, alternatively, to identify other kinds of low temperature behaviors. Based on specific heat (CmC_m) and entropy (SmS_m) results, three different types of phase diagrams are recognized: i) with the entropy involved into the ordered phase (SMOS_{MO}) decreasing proportionally to the ordering temperature (TMOT_{MO}), ii) those showing a transference of degrees of freedom from the ordered phase to a non-magnetic component, with their Cm(TMO)C_m(T_{MO}) jump (ΔCm\Delta C_m) vanishing at finite temperature, and iii) those ending in a critical point at finite temperature because their ΔCm\Delta C_m do not decrease with TMOT_{MO} producing an entropy accumulation at low temperature. Only those systems belonging to the first case, i.e. with SMO0S_{MO}\to 0 as TMO0T_{MO}\to 0, can be regarded as candidates for quantum critical behavior. Their magnetic phase boundaries deviate from the classical negative curvature below T2.5T\approx 2.5\,K, denouncing frequent misleading extrapolations down to T=0. Different characteristic concentrations are recognized and analyzed for Ce-ligand alloyed systems. Particularly, a pre-critical region is identified, where the nature of the magnetic transition undergoes significant modifications, with its Cm/T\partial C_m/\partial T discontinuity strongly affected by magnetic field and showing an increasing remnant entropy at T0T\to 0. Physical constraints arising from the third law at T0T\to 0 are discussed and recognized from experimental results

    Unilateral optic neuropathy following subdural hematoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Unilateral optic neuropathy is commonly due to a prechiasmatic affliction of the anterior visual pathway, while losses in visual hemifields result from the damage to brain hemispheres. Here we report the unusual case of a patient who suffered from acute optic neuropathy following hemispherical subdural hematoma. Although confirmed up to now only through necropsy studies, our case strongly suggests a local, microcirculatory deficit identified through magnetic resonance imaging <it>in vivo</it>.</p> <p>Case presentation</p> <p>A 70-year-old Caucasian German who developed a massive left hemispheric subdural hematoma under oral anticoagulation presented with acute, severe visual impairment on his left eye, which was noticed after surgical decompression. Neurologic and ophthalmologic examinations indicated sinistral optic neuropathy with visual acuity reduced nearly to amaurosis. Ocular pathology such as vitreous body hemorrhage, papilledema, and central retinal artery occlusion were excluded. An orbital lesion was ruled out by means of orbital magnetic resonance imaging. However, cerebral diffusion-weighted imaging and T2 maps of magnetic resonance imaging revealed a circumscribed ischemic lesion within the edematous, slightly herniated temporomesial lobe within the immediate vicinity of the affected optic nerve. Thus, the clinical course and morphologic magnetic resonance imaging findings suggest the occurrence of pressure-induced posterior ischemic optic neuropathy due to microcirculatory compromise.</p> <p>Conclusion</p> <p>Although lesions of the second cranial nerve following subdural hematoma have been reported individually, their pathogenesis was preferentially proposed from autopsy studies. Here we discuss a dual, pressure-induced and secondarily ischemic pathomechanism on the base of <it>in vivo </it>magnetic resonance imaging diagnostics which may remain unconsidered by computed tomography.</p

    The Composition of the Cuticular and Internal Free Fatty Acids and Alcohols from Lucilia sericata Males and Females

    Get PDF
    GC, GC–MS, and HPLC–LLSD analyses were used to identify and quantify cuticular and internal lipids in males and females of the blow-fly (Lucilia sericata). Sixteen free fatty acids, seven alcohols and cholesterol were identified and quantitatively determined in the cuticular lipids of L. sericata. Cuticular fatty acids ranged from C6 to C20 and included unsaturated entities such as 16:1n-9, 18:1n-9, 20:4n-3 and 20:5n-3. Cuticular alcohols (only saturated and even-numbered) ranged from C12 to C20 in males and C10 to C22 in females. Only one sterol was found in the cuticular lipids of both males and females. 23 free fatty acids, five alcohols and cholesterol were identified in the internal lipids. Internal fatty acids were present in large amounts—7.4 mg/g (female) and 10.1 mg/g (male). Only traces of internal alcohols (from C14 to C26 in males, from C14 to C22 in females) were found in L. sericata. Large amounts of internal cholesterol were identified in L. sericata males and females (0.49 and 0.97 mg/g of the insect body, respectively)
    corecore