53 research outputs found

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    Dust in Supernovae and Supernova Remnants II: Processing and survival

    Get PDF
    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations

    Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity

    No full text
    The wheatbelt region of Western Australia has been extensively cleared of indigenous vegetation for agriculture and is now severely affected by dryland salinity. Wetlands that were once freshwater are now saline and others are under threat, as are the animals and plants that inhabit them. Rising groundwater is also affecting the many naturally saline playas. To provide a framework for setting conservation priorities in this region a biological survey was undertaken, including sampling of aquatic invertebrates at 230 wetlands. In this paper, we have used data from the survey to summarise occurrence of species in relation to salinity. Total species richness at a wetland showed no response to salinity below 4.1 g l)1 and then declined dramatically as salinity increased. When halophilic species were excluded from consideration, species richness was found to decline from 2.6 g l)1. These patterns are compared to previous studies of richnesssalinity relationships. There is some evidence that the freshwater invertebrate fauna of the wheatbelt may be comparatively salt tolerant, with 46% of freshwater species collected at salinities above 3 g l)1 and 17% above 10 g l)1, though these proportions differed between various invertebrate groups. While this tolerance will provide a buffer against the effects of mild salinisation, many species are at risk of regional extinction as salinisation becomes more widespread.Adrian M. Pinder, Stuart A. Halse, Jane M. McRae & Russell J. Shie

    Astrophysics of Dust in Cold Clouds

    No full text

    Dopamine-Glutamate Interactions in Reward-Related Incentive Learning

    No full text
    • …
    corecore