4,600 research outputs found

    Development of low cost ablative nozzles for solid propellant rocket motors, volume 1 Final report

    Get PDF
    Evaluating low cost ablative materials for use in large solid propellant rocket motor

    Reconstruction of primordial density fields

    Full text link
    The Monge-Ampere-Kantorovich (MAK) reconstruction is tested against cosmological N-body simulations. Using only the present mass distribution sampled with particles, and the assumption of homogeneity of the primordial distribution, MAK recovers for each particle the non-linear displacement field between its present position and its Lagrangian position on a primordial uniform grid. To test the method, we examine a standard LCDM N-body simulation with Gaussian initial conditions and 6 models with non-Gaussian initial conditions: a chi-squared model, a model with primordial voids and four weakly non-Gaussian models. Our extensive analyses of the Gaussian simulation show that the level of accuracy of the reconstruction of the nonlinear displacement field achieved by MAK is unprecedented, at scales as small as about 3 Mpc. In particular, it captures in a nontrivial way the nonlinear contribution from gravitational instability, well beyond the Zel'dovich approximation. This is also confirmed by our analyses of the non-Gaussian samples. Applying the spherical collapse model to the probability distribution function of the divergence of the displacement field, we also show that from a well-reconstructed displacement field, such as that given by MAK, it is possible to accurately disentangle dynamical contributions induced by gravitational clustering from possible initial non-Gaussianities, allowing one to efficiently test the non-Gaussian nature of the primordial fluctuations. In addition, a simple application of MAK using the Zel'dovich approximation allows one to also recover accurately the present-day peculiar velocity field on scales of about 8 Mpc.Comment: Version to appear in MNRAS, 24 pages, 21 figures appearing (uses 35 figure files), 1 tabl

    Dust heating by the interstellar radiation field in models of turbulent molecular clouds

    Get PDF
    We have calculated the radiation field, dust grain temperatures, and far infrared emissivity of numerical models of turbulent molecular clouds. When compared to a uniform cloud of the same mean optical depth, most of the volume inside the turbulent cloud is brighter, but most of the mass is darker. There is little mean attenuation from center to edge, and clumping causes the radiation field to be somewhat bluer. There is also a large dispersion, typically by a few orders of magnitude, of all quantities relative to their means. However, despite the scatter, the 850 micron emission maps are well correlated with surface density. The fraction of mass as a function of intensity can be reproduced by a simple hierarchical model of density structure.Comment: 32 pages, 14 figures, submitted to Ap

    The Warm Ionized Medium in the Milky Way and Other Galaxies

    Full text link
    Observations of the "Warm Ionized Medium" (or, equivalently, the "Diffuse Ionized Gas") of the local ISM, the Perseus arm in the Milky Way, and also in several other galaxies show strong [NII]6563 (~H-alpha in some cases) and [SII]6717/[NII]6583 = 0.6 - 0.7 in all locations and objects. Other line ratios (e.g., [O III]5007/H-beta) vary considerably. Simple photoionization models reproduce the observed spectra, providing extra heating beyond that supplied by photoionization is assumed (Reynolds, Haffner, & Tufte 1999). With observed gas-phase abundances (not solar), the line ratios in the local arm at b = 0 deg are fitted with no extra heating and (S/H) = 13 ppm (solar is 20 ppm). Local gas observed at b = -35 deg requires extra heating of about gamma = 0.75, where gamma is the extra heating in units of 10^{-25} erg H^{-1} s^{-1}. In the Perseus arm, there are similar results, with a domposition consistent with the Galactic abundance gradient. The requirements for NGC 891 are similar to the Perseus arm: little or no extra heating at |z| = 1 kpc and gamma 3 at 2 kpc. In NGC 891 there is also an increase of 5007/H-alpha with |z| that can only come about if most of the ionizing radiation is supplied by stars with T~50000 K. Either their radiation must propagate from the plane to high |z| through very little intervening matter, or else the stars are located at high |z|. The total power requirement of the extra heating is <15% of the photoionization power. [O~II]3727/H-beta can serve as a useful diagnostic of extra heating, but [S~III] 9065,9531/H-alpha is not useful in this regard.Comment: 32 pages, including 2 figures. To appear in November 20 Ap

    CP and related phenomena in the context of Stellar Evolution

    Full text link
    We review the interaction in intermediate and high mass stars between their evolution and magnetic and chemical properties. We describe the theory of Ap-star `fossil' fields, before touching on the expected secular diffusive processes which give rise to evolution of the field. We then present recent results from a spectropolarimetric survey of Herbig Ae/Be stars, showing that magnetic fields of the kind seen on the main-sequence already exist during the pre-main sequence phase, in agreement with fossil field theory, and that the origin of the slow rotation of Ap/Bp stars also lies early in the pre-main sequence evolution; we also present results confirming a lack of stars with fields below a few hundred gauss. We then seek which macroscopic motions compete with atomic diffusion in determining the surface abundances of AmFm stars. While turbulent transport and mass loss, in competition with atomic diffusion, are both able to explain observed surface abundances, the interior abundance distribution is different enough to potentially lead to a test using asterosismology. Finally we review progress on the turbulence-driving and mixing processes in stellar radiative zones.Comment: Proceedings of IAU GA in Rio, JD4 on Ap stars; 10 pages, 7 figure

    Development of low cost ablative nozzles for solid propellant rocket motors, volume 2 Final report

    Get PDF
    Evaluation of low cost materials for solid propellant rocket motor

    Calculating Cross Sections of Composite Interstellar Grains

    Get PDF
    Interstellar grains may be composite collections of particles of distinct materials, including voids, agglomerated together. We determine the various optical cross sections of such composite grains, given the optical properties of each constituent, using an approximate model of the composite grain. We assume it consists of many concentric spherical layers of the various materials, each with a specified volume fraction. In such a case the usual Mie theory can be generalized and the extinction, scattering, and other cross sections determined exactly. We find that the ordering of the materials in the layering makes some difference to the derived cross sections, but averaging over the various permutations of the order of the materials provides rapid convergence as the number of shells (each of which is filled by all of the materials proportionately to their volume fractions) is increased. Three shells, each with one layer of a particular constituent material, give a very satisfactory estimate of the average cross section produced by larger numbers of shells. We give the formulae for the Rayleigh limit (small size parameter) for multi-layered spheres and use it to propose an ``Effective Medium Theory'' (EMT), in which an average optical constant is taken to represent the ensemble of materials. Multi-layered models are used to compare the accuracies of several EMTs already in the literature.Comment: 29 pages, 6 figures, accepted for publication in the Astrophysical Journal (part 1, scheduled in Vol. 526, #1, Nov. 20

    Flow control in S-Shaped Air Intake using Zero-Net-Mass-Flow

    Get PDF
    Flow control using zero-net-mass-flow jets in a twodimensional model of an S-Shaped air intake diffuser was investigated. Experiments were conducted in a channel flow facility at a Reynolds number of Re = 8×104 with particular image velocimetry measurements in the symmetry plane of the duct. In the natural configuration, separation of the boundary layer occurs in a region of the duct with a high degree of curvature. A stability analysis of the wall normal profile at the location of the applied control is presented and estimates the most effective frequency of the actuator. Time-averaged velocity fields show total reattachment of the boundary layer using active flow control
    corecore