Interstellar grains may be composite collections of particles of distinct
materials, including voids, agglomerated together. We determine the various
optical cross sections of such composite grains, given the optical properties
of each constituent, using an approximate model of the composite grain. We
assume it consists of many concentric spherical layers of the various
materials, each with a specified volume fraction. In such a case the usual Mie
theory can be generalized and the extinction, scattering, and other cross
sections determined exactly.
We find that the ordering of the materials in the layering makes some
difference to the derived cross sections, but averaging over the various
permutations of the order of the materials provides rapid convergence as the
number of shells (each of which is filled by all of the materials
proportionately to their volume fractions) is increased. Three shells, each
with one layer of a particular constituent material, give a very satisfactory
estimate of the average cross section produced by larger numbers of shells.
We give the formulae for the Rayleigh limit (small size parameter) for
multi-layered spheres and use it to propose an ``Effective Medium Theory''
(EMT), in which an average optical constant is taken to represent the ensemble
of materials.
Multi-layered models are used to compare the accuracies of several EMTs
already in the literature.Comment: 29 pages, 6 figures, accepted for publication in the Astrophysical
Journal (part 1, scheduled in Vol. 526, #1, Nov. 20