4,191 research outputs found
Quantitative Phase Field Model of Alloy Solidification
We present a detailed derivation and thin interface analysis of a phase-field
model that can accurately simulate microstructural pattern formation for
low-speed directional solidification of a dilute binary alloy. This advance
with respect to previous phase-field models is achieved by the addition of a
phenomenological "antitrapping" solute current in the mass conservation
relation [A. Karma, Phys. Rev. Lett 87, 115701 (2001)]. This antitrapping
current counterbalances the physical, albeit artificially large, solute
trapping effect generated when a mesoscopic interface thickness is used to
simulate the interface evolution on experimental length and time scales.
Furthermore, it provides additional freedom in the model to suppress other
spurious effects that scale with this thickness when the diffusivity is unequal
in solid and liquid [R. F. Almgren, SIAM J. Appl. Math 59, 2086 (1999)], which
include surface diffusion and a curvature correction to the Stefan condition.
This freedom can also be exploited to make the kinetic undercooling of the
interface arbitrarily small even for mesoscopic values of both the interface
thickness and the phase-field relaxation time, as for the solidification of
pure melts [A. Karma and W.-J. Rappel, Phys. Rev. E 53, R3017 (1996)]. The
performance of the model is demonstrated by calculating accurately for the
first time within a phase-field approach the Mullins-Sekerka stability spectrum
of a planar interface and nonlinear cellular shapes for realistic alloy
parameters and growth conditions.Comment: 51 pages RevTeX, 5 figures; expanded introduction and discussion; one
table and one reference added; various small correction
Green fluorescent diamidines as diagnostic probes for trypanosomes
LED fluorescence microscopy offers potential benefits to the diagnosis of human African trypanosomiasis, as well as to other aspects of diseases management, such as detection of drug resistant strains. To advance such approaches reliable and specific fluorescent markers to stain parasites in human fluids are needed. Here we report a series of novel green fluorescent diamidines and their suitability as probes to stain trypanosomes
Phase-field simulations of viscous fingering in shear-thinning fluids
A phase-field model for the Hele-Shaw flow of non-Newtonian fluids is
developed. It extends a previous model for Newtonian fluids to a wide range of
shear-dependent fluids. The model is applied to perform simulations of viscous
fingering in shear- thinning fluids, and it is found to be capable of
describing the complete crossover from the Newtonian regime at low shear rate
to the strongly shear-thinning regime at high shear rate. The width selection
of a single steady-state finger is studied in detail for a 2-plateaux
shear-thinning law (Carreau law) in both its weakly and strongly shear-thinning
limits, and the results are related to previous analyses. In the strongly
shear-thinning regime a rescaling is found for power-law (Ostwald-de-Waehle)
fluids that allows for a direct comparison between simulations and experiments
without any adjustable parameters, and good agreement is obtained
Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration
In this paper we propose several models that describe the dynamics of liquid
films which are covered by a high concentration layer of insoluble surfactant.
First, we briefly review the 'classical' hydrodynamic form of the coupled
evolution equations for the film height and surfactant concentration that are
well established for small concentrations. Then we re-formulate the basic model
as a gradient dynamics based on an underlying free energy functional that
accounts for wettability and capillarity. Based on this re-formulation in the
framework of nonequilibrium thermodynamics, we propose extensions of the basic
hydrodynamic model that account for (i) nonlinear equations of state, (ii)
surfactant-dependent wettability, (iii) surfactant phase transitions, and (iv)
substrate-mediated condensation. In passing, we discuss important differences
to most of the models found in the literature.Comment: 31 pages, 2 figure
Silicon nanoparticles and interstellar extinction
To examine a recently proposed hypothesis that silicon nanoparticles are the
source of extended red emission (ERE) in the interstellar medium, we performed
a detailed modeling of the mean Galactic extinction in the presence of silicon
nanoparticles. For this goal we used the appropriate optical constants of
nanosized Si, essentially different from those of bulk Si due to quantum
confinement. It was found that a dust mixture of silicon nanoparticles, bare
graphite grains, silicate core-organic refractory mantle grains and three-layer
silicate-water ice-organic refractory grains works well in explaining the
extinction and, in addition, results in the acceptable fractions of UV/visible
photons absorbed by silicon nanoparticles: 0.071-0.081. Since these fractions
barely agree with the fraction of UV/visible photons needed to excite the
observed ERE, we conclude that the intrinsic photon conversion efficiency of
the photoluminescence by silicon nanoparticles must be near 100%, if they are
the source of the ERE.Comment: Latex2e, uses emulateapj.sty (included), multicol.sty, epsf.sty, 6
pages, 3 figures (8 Postscript files), accepted for publication in ApJ
Letters, complete Postscript file is also available at
http://physics.technion.ac.il/~zubko/eb.html#SNP
Optical Spectroscopy of Galactic Cirrus Clouds: Extended Red Emission in the Diffuse Interstellar Medium
We present initial results from the first optical spectroscopic survey of
high latitude Galactic cirrus clouds. The observed shape of the cirrus spectrum
does not agree with that of scattered ambient Galactic starlight. This mismatch
can be explained by the presence of Extended Red Emission (ERE) in the diffuse
interstellar medium, as found in many other astronomical objects, probably
caused by photoluminescence of hydrocarbons. The integrated ERE intensity,
I_ERE \approx 1.2 x 10^{-5} erg s^{-1} cm^{-2} sr^{-1}, is roughly a third of
the scattered light intensity, consistent with recent color measurements of
diffuse Galactic light. The peak of the cirrus ERE (lambda_{0} \sim 6000 AA) is
shifted towards short (bluer) wavelengths compared to the ERE in sources
excited by intense ultraviolet radiation, such as HII regions (lambda_{0} sim
8000 AA); such a trend is seen in laboratory experiments on hydrogenated
amorphous carbon films.Comment: 7 pages, 2 figures. Accepted for publication in ApJ Letter
The Thermal Structure of Gas in Pre-Stellar Cores: A Case Study of Barnard 68
We present a direct comparison of a chemical/physical model to
multitransitional observations of C18O and 13CO towards the Barnard 68
pre-stellar core. These observations provide a sensitive test for models of low
UV field photodissociation regions and offer the best constraint on the gas
temperature of a pre-stellar core. We find that the gas temperature of this
object is surprisingly low (~7-8 K), and significantly below the dust
temperature, in the outer layers (Av < 5 mag) that are traced by C18O and 13CO
emission. As shown previously, the inner layers (Av > 5 mag) exhibit
significant freeze-out of CO onto grain surfaces. Because the dust and gas are
not fully coupled, depletion of key coolants in the densest layers raises the
core (gas) temperature, but only by ~1 K. The gas temperature in layers not
traced by C18O and 13CO emission can be probed by NH3 emission, with a
previously estimated temperature of ~10-11 K. To reach these temperatures in
the inner core requires an order of magnitude reduction in the gas to dust
coupling rate. This potentially argues for a lack of small grains in the
densest gas, presumably due to grain coagulation.Comment: 33 pages, 11 figures, accepted by Astrophysical Journa
Eutectic Colony Formation: A Stability Analysis
Experiments have widely shown that a steady-state lamellar eutectic
solidification front is destabilized on a scale much larger than the lamellar
spacing by the rejection of a dilute ternary impurity and forms two-phase cells
commonly referred to as `eutectic colonies'. We extend the stability analysis
of Datye and Langer for a binary eutectic to include the effect of a ternary
impurity. We find that the expressions for the critical onset velocity and
morphological instability wavelength are analogous to those for the classic
Mullins-Sekerka instability of a monophase planar interface, albeit with an
effective surface tension that depends on the geometry of the lamellar
interface and, non-trivially, on interlamellar diffusion. A qualitatively new
aspect of this instability is the occurence of oscillatory modes due to the
interplay between the destabilizing effect of the ternary impurity and the
dynamical feedback of the local change in lamellar spacing on the front motion.
In a transient regime, these modes lead to the formation of large scale
oscillatory microstructures for which there is recent experimental evidence in
a transparent organic system. Moreover, it is shown that the eutectic front
dynamics on a scale larger than the lamellar spacing can be formulated as an
effective monophase interface free boundary problem with a modified
Gibbs-Thomson condition that is coupled to a slow evolution equation for the
lamellar spacing. This formulation provides additional physical insights into
the nature of the instability and a simple means to calculate an approximate
stability spectrum. Finally, we investigate the influence of the ternary
impurity on a short wavelength oscillatory instability that is already present
at off-eutectic compositions in binary eutectics.Comment: 26 pages RevTex, 14 figures (28 EPS files); some minor changes;
references adde
Analytical model of brittle destruction based on hypothesis of scale similarity
The size distribution of dust particles in nuclear fusion devices is close to
the power function. A function of this kind can be the result of brittle
destruction. From the similarity assumption it follows that the size
distribution obeys the power law with the exponent between -4 and -1. The model
of destruction has much in common with the fractal theory. The power exponent
can be expressed in terms of the fractal dimension. Reasonable assumptions on
the shape of fragments concretize the power exponent, and vice versa possible
destruction laws can be inferred on the basis of measured size distributions.Comment: 10 pages, 3 figure
Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability
During the directional solidification of peritectic alloys, two stable solid
phases (parent and peritectic) grow competitively into a metastable liquid
phase of larger impurity content than either solid phase. When the parent or
both solid phases are morphologically unstable, i.e., for a small temperature
gradient/growth rate ratio (), one solid phase usually outgrows and
covers the other phase, leading to a cellular-dendritic array structure closely
analogous to the one formed during monophase solidification of a dilute binary
alloy. In contrast, when is large enough for both phases to be
morphologically stable, the formation of the microstructurebecomes controlled
by a subtle interplay between the nucleation and growth of the two solid
phases. The structures that have been observed in this regime (in small samples
where convection effect are suppressed) include alternate layers (bands) of the
parent and peritectic phases perpendicular to the growth direction, which are
formed by alternate nucleation and lateral spreading of one phase onto the
other as proposed in a recent model [R. Trivedi, Metall. Mater. Trans. A 26, 1
(1995)], as well as partially filled bands (islands), where the peritectic
phase does not fully cover the parent phase which grows continuously. We
develop a phase-field model of peritectic solidification that incorporates
nucleation processes in order to explore the formation of these structures.
Simulations of this model shed light on the morphology transition from islands
to bands, the dynamics of spreading of the peritectic phase on the parent phase
following nucleation, which turns out to be characterized by a remarkably
constant acceleration, and the types of growth morphology that one might expect
to observe in large samples under purely diffusive growth conditions.Comment: Final version, minor revisions, 16 pages, 14 EPS figures, RevTe
- …
