During the directional solidification of peritectic alloys, two stable solid
phases (parent and peritectic) grow competitively into a metastable liquid
phase of larger impurity content than either solid phase. When the parent or
both solid phases are morphologically unstable, i.e., for a small temperature
gradient/growth rate ratio (G/vp), one solid phase usually outgrows and
covers the other phase, leading to a cellular-dendritic array structure closely
analogous to the one formed during monophase solidification of a dilute binary
alloy. In contrast, when G/vp is large enough for both phases to be
morphologically stable, the formation of the microstructurebecomes controlled
by a subtle interplay between the nucleation and growth of the two solid
phases. The structures that have been observed in this regime (in small samples
where convection effect are suppressed) include alternate layers (bands) of the
parent and peritectic phases perpendicular to the growth direction, which are
formed by alternate nucleation and lateral spreading of one phase onto the
other as proposed in a recent model [R. Trivedi, Metall. Mater. Trans. A 26, 1
(1995)], as well as partially filled bands (islands), where the peritectic
phase does not fully cover the parent phase which grows continuously. We
develop a phase-field model of peritectic solidification that incorporates
nucleation processes in order to explore the formation of these structures.
Simulations of this model shed light on the morphology transition from islands
to bands, the dynamics of spreading of the peritectic phase on the parent phase
following nucleation, which turns out to be characterized by a remarkably
constant acceleration, and the types of growth morphology that one might expect
to observe in large samples under purely diffusive growth conditions.Comment: Final version, minor revisions, 16 pages, 14 EPS figures, RevTe