38 research outputs found

    Characterisation of a low methane emission rice cultivar suitable for cultivation in high latitude light and temperature conditions

    Get PDF
    Rice cultivation on paddy soil is commonly associated with emissions of methane, a greenhouse gas, but rice varieties may differ in their actual level of emissions. This study analysed methane emissions associated with 22 distinct rice genotypes, using gas chromatography, and identified the cultivar Heijing 5 from northern China as a potential low-methane rice variety. To confirm this and to examine whether Heijing 5 can perform similarly at higher latitudes, Heijing 5 was cultivated in field trials in China (lat. 32° N) and Sweden (lat. 59° N) where (i) methane emissions were measured, (ii) methanogen abundance in the rhizosphere was determined using quantitative PCR, and (iii) the concentrations of nutrients in water and of heavy metals in rice grain and paddy soil were analysed. The results demonstrated that the low-methane rice cultivar Heijing 5 can successfully complete an entire growth period at high-latitude locations such as central Sweden. Massively parallel sequencing of mRNAs identified candidate genes involved in day length and cold acclimatisation. Cultivation of Heijing 5 in central Sweden was also associated with relatively low heavy metal accumulation in rice grains and lowered nutrient losses to neighbouring water bodies

    The phenome analysis of mutant alleles in Leucine-Rich Repeat Receptor-Like Kinase genes in rice reveals new potential targets for stress tolerant cereals

    Get PDF
    AbstractPlants are constantly exposed to a variety of biotic and abiotic stresses that reduce their fitness and performance. At the molecular level, the perception of extracellular stimuli and the subsequent activation of defense responses require a complex interplay of signaling cascades, in which protein phosphorylation plays a central role. Several studies have shown that some members of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) family are involved in stress and developmental pathways. We report here a systematic analysis of the role of the members of this gene family by mutant phenotyping in the monocotyledon model plant rice, Oryza sativa. We have then targeted 176 of the ∼320 LRR-RLK genes (55.7%) and genotyped 288 mutant lines. Position of the insertion was confirmed in 128 lines corresponding to 100 LRR-RLK genes (31.6% of the entire family). All mutant lines harboring homozygous insertions have been screened for phenotypes under normal conditions and under various abiotic stresses. Mutant plants have been observed at several stages of growth, from seedlings in Petri dishes to flowering and grain filling under greenhouse conditions. Our results show that 37 of the LRR-RLK rice genes are potential targets for improvement especially in the generation of abiotic stress tolerant cereals

    Genome-wide association mapping for root cone angle in rice

    Full text link
    Background: Plant root systems play a major role in anchoring and in water and nutrient uptake from the soil. The root cone angle is an important parameter of the root system architecture because, combined with root depth, it helps to determine the volume of soil explored by the plant. Two genes, DRO1 and SOR1, and several QTLs for root cone angle have been discovered in the last 5 years. Results: To find other QTLs linked to root cone angle, a genome-wide association mapping study was conducted on two panels of 162 indica and 169 japonica rice accessions genotyped with two sets of SNP markers (genotyping-by-sequencing set with approximately 16,000 markers and high-density-rice-array set with approximately 300,000 markers). The root cone angle of all accessions was measured using a screen protractor on images taken after 1 month of plant growth in the Rhizoscope phenotyping system. The distribution of the root cone angle in the indica panel was Gaussian, but several accessions of the japonica panel (all the bulus from Indonesia and three temperate japonicas from Nepal or India) appeared as outliers with a very wide root cone angle. The data were submitted to association mapping using a mixed model with control of structure and kinship. A total of 15 QTLs for the indica panel and 40 QTLs for the japonica panel were detected. Genes underlying these QTLs (+/−50 kb from the significant markers) were analyzed. We focused our analysis on auxin-related genes, kinases, and genes involved in root developmental processes and identified 8 particularly interesting genes. Conclusions: The present study identifies new sources of wide root cone angle in rice, proposes ways to bypass some drawbacks of association mapping to further understand the genetics of the trait and identifies candidate genes deserving further investigation. (Résumé d'auteur

    Characterization of receptor kinases involved in the establishment of root architecture in rice

    No full text
    Les racines ont deux grands rôles. Le premier est le prélèvement de l’eau et des éléments nutritifs et le second est l’ancrage dans le sol. Identifier les gènes responsables de la mise en place des tissus et de l'architecture du système racinaire est donc essentiel pour pouvoir améliorer les variétés de riz soumises à des stress abiotiques de plus en plus fréquents et nombreux du fait du changement climatique. Au cours de cette thèse, j'ai réalisé une analyse fonctionnelle du gène DEFECTIVE IN OUTER CELL LAYER SPECIFICATION (DOCS1) qui appartient à la famille des récepteurs kinases à répétitions riches en leucine (LRR-RLK). Ces protéines sont composées de deux domaines principaux: un domaine extra-cytoplasmique composé de répétitions LRR et un domaine kinase intra-cytoplasmique. Un mutant de ce gène, nommé c68, possède une mutation non-sens dans le domaine kinase. Les plantes mutantes c68 présentent plusieurs phénotypes: une sensibilité accrue à l'aluminium, une réduction du nombre et de la taille des poils absorbants dans les racines, et des couches d’exoderme/épiderme d’identité mêlée. Le premier chapitre de la thèse porte sur l’étude conjointe de lignées knock-out CRISPRs du gène DOCS1 et de c68. Nos résultats ont montré que les mutants c68 et CRISPRs présentaient les mêmes phénotypes : sensibilité à l’aluminium, défauts des poils absorbants et tissus externes d’identité mixte. Ces résultats suggéraient que chez le mutant c68, soit la protéine DOCS1 n'était pas fonctionnelle, soit elle n'était pas traduite. Nos analyses phénotypiques ont aussi révélé que tous les mutants présentaient des défauts de réponse à la gravité à différents stades de développement. A 3 jours, un retard de réponse à la gravité était observé pendant la première heure après gravistimulation. Les plantules mutantes présentaient aussi des défauts de localisation d’un transporteur d’auxine. A 40 jours, nous avons observé que l'angle du cône racinaire des plantes mutantes était plus ouvert que celui des plantes sauvages. Deux gènes liés à l’auxine et plusieurs QTLs ont déjà été identifiés comme participant à ce phénotype chez le riz. Dans la suite de notre étude, nous avons donc cherché à identifier de nouveaux QTLs et gènes impliqués dans ce phénotype morphologique par étude d'association pan-génomique dans deux panels Indica et Japonica. Toutes les accessions de l'écotype bulu d'Indonésie et trois japonicas tempérés d'Asie du Sud présentaient un angle du cône racinaire très ouvert. En utilisant un modèle mixte associé à une technique de ré-échantillonnage, 55 QTLs ont été détectés. L'analyse des gènes sous-jacents ou voisin (+/- 50kb) a identifié 539 gènes, dont 6 LRR-RLK, 5 gènes liés à l’auxine et 5 gènes avec une fonction validée dans le développement ou l'architecture racinaire. Une approche complémentaire par cartographie génétique classique est proposée pour identifier les gènes en cause dans la ou les mutations à angle du cône racinaire très ouvert. Des perspectives de poursuite du travail effectué sont aussi présentées afin de déterminer si le phénotype affectant l'angle du cône racinaire induit par les mutations du gène DOCS1 ou des nouveaux gènes identifiés est lié à des perturbations des flux d’auxine.Roots have two major roles. The first one is to uptake water and nutrients and the second one is to anchor plants into the ground. Identifying the genes responsible for the establishment of tissues and architecture of the root system is essential to improve rice varieties subject to increasingly frequent and numerous abiotic stresses due to climate change. During my PhD, I undertook a functional analysis of the DEFECTIVE IN OUTER CELL LAYER SPECIFICATION (DOCS1) gene which belongs to the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) family. These proteins are composed of two main domains: an extra-cytoplasmic domain containing LRR repeats and a cytoplasmic kinase domain. A mutant of this gene, named c68, carries a nonsense mutation in the kinase domain. The c68 mutant plants show several phenotypes: increased sensitivity to aluminum, reduced number and size of root hairs, and layers of external tissues with exodermis/epidermis mixed identity. The first chapter of the thesis focuses on the joint study of knockout CRISPRs lines of the DOCS1 gene and c68. Our results showed that the c68 and CRISPRs mutants displayed the same phenotypes: sensitivity to aluminum, defects in root hairs and mixed identity of external tissues. These results suggested that in the c68 mutant, either the DOCS1 protein was not functional, or the protein was not translated. Our phenotypic analyses also showed that all mutants exhibited impaired gravity responses at different development stages. At 3 days, a delay of response to gravity was observed during the first hour after gravistimulation. Mutant seedlings also had defects in an auxin transporter localization. At 40 days, we observed that the root cone angle of mutant plants was more open than that of wild-type plants. Two genes associated with auxin and several QTLs have been identified as contributing to this phenotype in rice. In the rest of our study, we therefore tried to identify new QTLs and genes involved in this morphological phenotype by a genome-wide association study in two Indica and Japonica panels. All accessions of the bulu ecotype from Indonesia and three South Asian temperate japonica had a very open root cone angle. Using a mixed model associated with a resampling technique, 55 QTLs were detected. The analysis of the underlying or neighbor (+/- 50kb) genes identified 539 genes, including 6 LRR-RLK, 5 genes related to auxin and 5 genes with a function validated in root development or architecture. A complementary approach by classical genetic mapping is proposed to identify genes involved in the mutation(s) involved in very open root cone angle. Prospective research lines are also presented to determine if the root cone angle phenotype , induced by DOCS1 or by newly identified genes, is linked with disruption of auxin fluxes

    A low-methane rice with high-yield potential realized via optimized carbon partitioning

    Get PDF
    Global rice cultivation significantly contributes to anthropogenic methane emissions. The methane emissions are caused by methane-producing microorganisms (methanogenic archaea) that are favoured by the anoxic conditions of paddy soils and small carbon molecules released from rice roots. However, different rice cultivars are associated with differences in methane emission rates suggesting that there is a considerable natural variation in this trait. Starting from the hypothesis that sugar allocation within a plant is an important factor influencing both yields and methane emissions, the aim of this study was to produce high-yielding rice lines associated with low methane emissions. In this study, the offspring (here termed progeny lines) of crosses between a newly characterized low-methane rice variety, Heijing 5, and three high-yielding elite varieties, Xiushui, Huayu and Jiahua, were selected for combined low-methane and high-yield properties. Analyses of total organic carbon and carbohydrates showed that the progeny lines stored more carbon in above-ground tissues than the maternal elite varieties. Also, metabolomic analysis of rhizospheric soil surrounding the progeny lines showed reduced levels of glucose and other carbohydrates. The carbon allocation, from roots to shoots, was further supported by a transcriptome analysis using massively parallel sequencing of mRNAs that demonstrated elevated expression of the sugar transporters SUT-C and SWEET in the progeny lines as compared to the parental varieties. Furthermore, measurement of methane emissions from plants, grown in greenhouse as well as outdoor rice paddies, showed a reduction in methane emissions by approximately 70 % in the progeny lines compared to the maternal elite varieties. Taken together, we report here on three independent low -methane -emission rice lines with high yield potential. We also provide a first molecular characterisation of the progeny lines that can serve as a foundation for further studies of candidate genes involved in sugar allocation and reduced methane emissions from rice cultivation

    Characterisation of a low methane emission rice cultivar suitable for cultivation in high latitude light and temperature conditions

    Get PDF
    Rice cultivation on paddy soil is commonly associated with emissions of methane, a greenhouse gas, but rice varieties may differ in their actual level of emissions. This study analysed methane emissions associated with 22 distinct rice genotypes, using gas chromatography, and identified the cultivar Heijing 5 from northern China as a potential low-methane rice variety. To confirm this and to examine whether Heijing 5 can perform similarly at higher latitudes, Heijing 5 was cultivated in field trials in China (lat. 32 & DEG; N) and Sweden (lat. 59 & DEG; N) where (i) methane emissions were measured, (ii) methanogen abundance in the rhizosphere was determined using quantitative PCR, and (iii) the concentrations of nutrients in water and of heavy metals in rice grain and paddy soil were analysed. The results demonstrated that the low-methane rice cultivar Heijing 5 can successfully complete an entire growth period at high-latitude locations such as central Sweden. Massively parallel sequencing of mRNAs identified candidate genes involved in day length and cold acclimatisation. Cultivation of Heijing 5 in central Sweden was also associated with relatively low heavy metal accumulation in rice grains and lowered nutrient losses to neighbouring water bodies

    Immunoprofiling of Rice Root Cortex Reveals Two Cortical Subdomains

    No full text
    The formation and differentiation of aerenchyma, i.e., air-containing cavities that are critical for flooding tolerance, take place exclusively in the cortex. The understanding of development and differentiation of the cortex is thus an important issue; however, studies on this tissue are limited, partly because of the lack of available molecular tools. We screened a commercially available library of cell wall antibodies to identify markers of cortical tissue in rice roots. Out of the 174 antibodies screened, eight were cortex-specific. Our analysis revealed that two types of cortical tissues are present in rice root seedlings. We named these cell layers 'inner' and 'outer' based on their location relative to the stele. We then used the antibodies to clarify cell identity in lateral roots. Without these markers, previous studies could not distinguish between the cortex and sclerenchyma in small lateral roots. By immunostaining lateral root sections, we showed that the internal ground tissue in small lateral roots has outer cortical identity

    Corrigendum: New insights on leucine-rich repeats receptor-like kinase orthologous relationships in angiosperms

    No full text
    AGAP : équipe ID / GE2popCorrigendum: New insights on leucine-rich repeats receptor-like kinase orthologous relationships in angiosperm
    corecore