3 research outputs found

    MicroRNA Involvement in Immune Activation During Heart Failure

    Get PDF
    Heart failure is one of the common end stages of cardiovascular diseases, the leading cause of death in developed countries. Molecular mechanisms underlying the development of heart failure remain elusive but there is a consistent observation of chronic immune activation and aberrant microRNA (miRNA) expression that is present in failing hearts. This review will focus on the interplay between the immune system and miRNAs as factors that play a role during the development of heart failure. Several studies have shown that heart failure patients can be characterized by a sustained innate immune activation. The role of inflammatory signaling is discussed and TLR4 signaling, IL-1Ξ², TNFΞ± and IL-6 expression appears to coincide with the development of heart failure. Furthermore, we describe the implication of the renin angiotensin aldosteron system in immunity and heart failure. In the past decade microRNAs (miRNAs), small non-coding RNAs that translationally repress protein synthesis by binding to partially complementary sequences of mRNA, have come to light as important regulators of several kinds of cardiovascular diseases including cardiac hypertrophy and heart failure. The involvement of differentially expressed miRNAs in the inflammation that occurs during the development of heart failure is still subject of investigation. Here, we summarize and comment on the first studies in this field and hypothesize on the putative involvement of certain miRNAs in heart failure. MicroRNAs have been shown to be critical regulators of cardiac function and inflammation. Future research will have to point out if dampening the immune response, and the miRNAs associated with it, during the development of heart failure is a therapeutically plausible route to follow

    A combined microRNA and chemokine profile in urine to identify rejection after kidney transplantation

    Get PDF
    Background. There is an unmet need for noninvasive tools for diagnosis of rejection after kidney transplantation. The aim of this study was to determine the discriminative value of a combined cellular and molecular biomarker platform in urine for the detection of rejection. Methods. First, microRNA (miR) molecules were screened in transplant biopsies and urine sediments of patients with acute rejection and patients without rejection and stable graft function. Second, the expression of 15 selected miRs was quantified in an independent set of 115 urine sediments of patients with rejection and 55 urine sediments of patients without histological signs of rejection on protocol biopsy. Additionally, CXCL-9 and CXCL-10 protein levels were quantified in the urine supernatant. Results. Levels of miR-155-5p (5.7-fold), miR-126-3p (4.2-fold), miR-21-5p (3.7-fold), miR-25-3p (2.5-fold), and miR-615-3p (0.4-fold) were significantly different between rejection and no-rejection urine sediments. CXCL-9 and CXCL-10 levels were significantly elevated in urine from recipients with rejection. In a multivariable model (sensitivity: 89.1%, specificity: 75.6%, area under the curve: 0.94, P < 0.001), miR-155-5p, miR-615-3p, and CXCL-9 levels were independent predictors of rejection. Stratified 10-fold cross validation of the model resulted in an area under the curve of 0.92. Conclusions. A combined urinary microRNA and chemokine profile discriminates kidney transplant rejection from stable graft conditions
    corecore