32 research outputs found

    MALT1 proteolytic activity suppresses autoimmunity in a T cell intrinsic manner

    Get PDF
    MALT1 is a central signaling component in innate and adaptive immunity by regulating NF-kappa B and other key signaling pathways in different cell types. Activities of MALT1 are mediated by its scaffold and protease functions. Because of its role in lymphocyte activation and proliferation, inhibition of MALT1 proteolytic activity is of high interest for therapeutic targeting in autoimmunity and certain lymphomas. However, recent studies showing that Mak1 protease-dead knock-in (Malt1-PD) mice suffer from autoimmune disease have somewhat tempered the initial enthusiasm. Although it has been proposed that an imbalance between immune suppressive regulatory T cells (Tregs) and activated effector CD4(+) T cells plays a key role in the autoimmune phenotype of Malt1-PD mice, the specific contribution of MALT1 proteolytic activity in T cells remains unclear. Using T cell-conditional Malt1 protease-dead knock-in (Malt1-PDT) mice, we here demonstrate that MALT1 has a T cell-intrinsic role in regulating the homeostasis and function of thymic and peripheral T cells. T cell-specific ablation of MALT1 proteolytic activity phenocopies mice in which MALT1 proteolytic activity has been genetically inactivated in all cell types. The Malt1-PDT mice have a reduced number of Tregs in the thymus and periphery, although the effect in the periphery is less pronounced compared to full-body Malt1-PD mice, indicating that also other cell types may promote Treg induction in a MALT1 protease-dependent manner. Despite the difference in peripheral Treg number, both T cell-specific and full-body Malt1-PD mice develop ataxia and multi-organ inflammation to a similar extent. Furthermore, reconstitution of the full-body Malt1-PD mice with T cell-specific expression of wild-type human MALT1 eliminated all signs of autoimmunity. Together, these findings establish an important T cell-intrinsic role of MALT1 proteolytic activity in the suppression of autoimmune responses

    Auto-Ubiquitination-Induced Degradation of MALT1-API2 Prevents BCL10 Destabilization in t(11;18)(q21;q21)-Positive MALT Lymphoma

    Get PDF
    BACKGROUND: The translocation t(11;18)(q21;q21) is the most frequent chromosomal aberration associated with MALT lymphoma and results in constitutive NF-kappaB activity via the expression of an API2-MALT1 fusion protein. The properties of the reciprocal MALT1-API2 were never investigated as it was reported to be rarely transcribed. PRINCIPAL FINDINGS: Our data indicate the presence of MALT1-API2 transcripts in the majority of t(11;18)(q21;q21)-positive MALT lymphomas. Based on the breakpoints in the MALT1 and API2 gene, the MALT1-API2 protein contains the death domain and one or both immunoglobulin-like domains of MALT1 (approximately 90% of cases)--mediating the possible interaction with BCL10--fused to the RING domain of API2. Here we show that this RING domain enables MALT1-API2 to function as an E3 ubiquitin ligase for BCL10, inducing its ubiquitination and proteasomal degradation in vitro. Expression of MALT1-API2 transcripts in t(11;18)(q21;q21)-positive MALT lymphomas was however not associated with a reduction of BCL10 protein levels. CONCLUSION: As we observed MALT1-API2 to be an efficient target of its own E3 ubiquitin ligase activity, our data suggest that this inherent instability of MALT1-API2 prevents its accumulation and renders a potential effect on MALT lymphoma development via destabilization of BCL10 unlikely

    The Dark Side of EGFP: Defective Polyubiquitination

    Get PDF
    Enhanced Green Fluorescent Protein (EGFP) is the most commonly used live cell reporter despite a number of conflicting reports that it can affect cell physiology. Thus far, the precise mechanism of GFP-associated defects remained unclear. Here we demonstrate that EGFP and EGFP fusion proteins inhibit polyubiquitination, a posttranslational modification that controls a wide variety of cellular processes, like activation of kinase signalling or protein degradation by the proteasome. As a consequence, the NF-κB and JNK signalling pathways are less responsive to activation, and the stability of the p53 tumour suppressor is enhanced in cell lines and in vivo. In view of the emerging role of polyubiquitination in the regulation of numerous cellular processes, the use of EGFP as a live cell reporter should be carefully considered

    MALT1 Protease: A New Therapeutic Target in B Lymphoma and Beyond?

    No full text

    T(11;18)(q21;q21)-positive gastrointestinal MALT lymphomas are heterogeneous with respect to the VH gene mutation status

    No full text
    AIM: To investigate how t(11;18)(q21;q21)-positive gastrointestinal MALT lymphomas relate to other marginal zone lymphomas with respect to the somatic mutation pattern of the VH genes and the expression of the marker CD27

    Malt1 self-cleavage is critical for regulatory Tcell homeostasis and anti-tumor immunity in mice

    No full text
    Mucosa-associated lymphoid tissue 1 (Malt1) regulates immune cell function by mediating the activation of nuclear factor κB (NF-κB) signaling through both its adaptor and proteolytic function. Malt1 is also a target of its own protease activity and this self-cleavage further contributes to NF-κB activity. Until now, the functional distinction between Malt1 self-cleavage and its general protease function in regulating NF-κB signaling and immune activation remained unclear. Here we demonstrate, using a new mouse model, the importance of Malt1 self-cleavage in regulating expression of NF-κB target genes and subsequent T cell activation. Significantly, we further establish that Treg homeostasis is critically linked to Malt1 function via a Treg intrinsic and extrinsic mechanism. TCR-mediated Malt1 proteolytic activity and self-cleavage was found to drive Il2 expression in conventional CD4+ T cells, thereby regulating Il2 availability for Treg homeostasis. Remarkably, the loss of Malt1-mediated self-cleavage alone was sufficient to cause a significant Treg deficit resulting in increased anti-tumor immune reactivity without associated autoimmunity complications. These results establish for the first time that inhibition of MALT1 proteolytic activity could be a viable therapeutic strategy to augment anti-tumor immunity.status: publishe
    corecore