7,320 research outputs found

    Existence of nodal solutions for Dirac equations with singular nonlinearities

    Full text link
    We prove, by a shooting method, the existence of infinitely many solutions of the form ψ(x0,x)=e−iΩx0χ(x)\psi(x^0,x) = e^{-i\Omega x^0}\chi(x) of the nonlinear Dirac equation {equation*} i\underset{\mu=0}{\overset{3}{\sum}} \gamma^\mu \partial_\mu \psi- m\psi - F(\bar{\psi}\psi)\psi = 0 {equation*} where Ω>m>0,\Omega>m>0, χ\chi is compactly supported and \[F(x) = \{{array}{ll} p|x|^{p-1} & \text{if} |x|>0 0 & \text{if} x=0 {array}.] with p∈(0,1),p\in(0,1), under some restrictions on the parameters pp and Ω.\Omega. We study also the behavior of the solutions as pp tends to zero to establish the link between these equations and the M.I.T. bag model ones

    Constraining short-range spin-dependent forces with polarized 3^3He

    Full text link
    We have searched for a short-range spin-dependent interaction using the spin relaxation of hyperpolarized 3^3He. Such a new interaction would be mediated by a hypothetical light scalar boson with \CP-violating couplings to the neutron. The walls of the 3^3He cell would generate a pseudomagnetic field and induce an extra depolarization channel. We did not see any anomalous spin relaxation and we report the limit for interaction ranges λ\lambda between 11 and 100 μm100~\rm{\mu m}: gsgpλ2≤2.6×10−28 m2 (95 % C.L.)g_sg_p \lambda ^2 \leq 2.6\times 10^{-28}~\mathrm{m^2}\, ( 95~\%\, \mathrm{C.L.}), where gsg_s(gpg_p) are the (pseudo)scalar coupling constant, improving the previous best limit by 1 order of magnitude

    Search for a new short-range spin-dependent force with polarized Helium 3

    Full text link
    Measuring the depolarization rate of a 3^3He hyperpolarized gas is a sensitive method to probe hypothetical short-range spin-dependent forces. A dedicated experiment is being set up at the Institute Laue Langevin in Grenoble to improve the sensitivity. We presented the status of the experiment at the 10th PATRAS Workshop on Axions, WIMPs and WISPs.Comment: Presented at the 10th PATRAS Workshop on Axions, WIMPs and WISP

    Self-management of context-aware overlay ambient networks

    Get PDF
    Ambient Networks (ANs) are dynamically changing and heterogeneous as they consist of potentially large numbers of independent, heterogeneous mobile nodes, with spontaneous topologies that can logically interact with each other to share a common control space, known as the Ambient Control Space. ANs are also flexible i.e. they can compose and decompose dynamically and automatically, for supporting the deployment of cross-domain (new) services. Thus, the AN architecture must be sophisticatedly designed to support such high level of dynamicity, heterogeneity and flexibility. We advocate the use of service specific overlay networks in ANs, that are created on-demand according to specific service requirements, to deliver, and to automatically adapt services to the dynamically changing user and network context. This paper presents a self-management approach to create, configure, adapt, contextualise, and finally teardown service specific overlay networks

    Ferromagnetism and interlayer exchange coupling in short period (Ga,Mn)As/GaAs superlattices

    Full text link
    Magnetic properties of (Ga,Mn)As/GaAs superlattices are investigated. The structures contain magnetic (Ga,Mn)As layers, separated by thin layers of non-magnetic GaAs spacer. The short period Ga0.93_{0.93}Mn0.07_{0.07}As/GaAs superlattices exhibit a paramagnetic-to-ferromagnetic phase transition close to 60K, for thicknesses of (Ga,Mn)As down to 23 \AA. For Ga0.96_{0.96}Mn0.04_{0.04}As/GaAs superlattices of similar dimensions, the Curie temperature associated with the ferromagnetic transition is found to oscillate with the thickness of non magnetic spacer. The observed oscillations are related to an interlayer exchange interaction mediated by the polarized holes of the (Ga,Mn)As layers.Comment: REVTeX 4 style; 4 pages, 2 figure

    Modelling the dynamics of turbulent floods

    Get PDF
    Consider the dynamics of turbulent flow in rivers, estuaries and floods. Based on the widely used k-epsilon model for turbulence, we use the techniques of centre manifold theory to derive dynamical models for the evolution of the water depth and of vertically averaged flow velocity and turbulent parameters. This new model for the shallow water dynamics of turbulent flow: resolves the vertical structure of the flow and the turbulence; includes interaction between turbulence and long waves; and gives a rational alternative to classical models for turbulent environmental flows

    WIYN Open Cluster Study. XXXVIII. Stellar Radial Velocities in the Young Open Cluster M35 (NGC 2168)

    Full text link
    We present 5201 radial-velocity measurements of 1144 stars, as part of an ongoing study of the young (150 Myr) open cluster M35 (NGC 2168). We have observed M35 since 1997, using the Hydra Multi-Object Spectrograph on the WIYN 3.5m telescope. Our stellar sample covers main-sequence stars over a magnitude range of 13.0<V<16.5 (1.6 - 0.8 Msun) and extends spatially to a radius of 30 arcminutes (7 pc in projection at a distance of 805 pc or 4 core radii). Due to its youth, M35 provides a sample of late-type stars with a range of rotation periods. Therefore, we analyze the radial-velocity measurement precision as a function of the projected rotational velocity. For narrow-lined stars (v sin i < 10 km/s), the radial velocities have a precision of 0.5 km/s, which degrades to 1.0 km/s for stars with v sin i = 50 km/s. The radial-velocity distribution shows a well-defined cluster peak with a central velocity of -8.16 +/- 0.05 km/s, permitting a clean separation of the cluster and field stars. For stars with >=3 measurements, we derive radial-velocity membership probabilities and identify radial-velocity variables, finding 360 cluster members, 55 of which show significant radial- velocity variability. Using these cluster members, we construct a color-magnitude diagram for our stellar sample cleaned of field star contamination. We also compare the spatial distribution of the single and binary cluster members, finding no evidence for mass segregation in our stellar sample. Accounting for measurement precision, we place an upper limit on the radial-velocity dispersion of the cluster of 0.81 +/- 0.08 km/s. After correcting for undetected binaries, we derive a true radial-velocity dispersion of 0.65 +/- 0.10 km/s.Comment: accepted for publication in A

    Grain-boundary grooving and agglomeration of alloy thin films with a slow-diffusing species

    Full text link
    We present a general phase-field model for grain-boundary grooving and agglomeration of polycrystalline alloy thin films. In particular, we study the effects of slow-diffusing species on grooving rate. As the groove grows, the slow species becomes concentrated near the groove tip so that further grooving is limited by the rate at which it diffuses away from the tip. At early times the dominant diffusion path is along the boundary, while at late times it is parallel to the substrate. This change in path strongly affects the time-dependence of grain boundary grooving and increases the time to agglomeration. The present model provides a tool for agglomeration-resistant thin film alloy design. keywords: phase-field, thermal grooving, diffusion, kinetics, metal silicidesComment: 4 pages, 6 figure

    Effect of lattice mismatch-induced strains on coupled diffusive and displacive phase transformations

    Full text link
    Materials which can undergo slow diffusive transformations as well as fast displacive transformations are studied using the phase-field method. The model captures the essential features of the time-temperature-transformation (TTT) diagrams, continuous cooling transformation (CCT) diagrams, and microstructure formation of these alloys. In some materials systems there can exist an intrinsic volume change associated with these transformations. We show that these coherency strains can stabilize mixed microstructures (such as retained austenite-martensite and pearlite-martensite mixtures) by an interplay between diffusive and displacive mechanisms, which can alter TTT and CCT diagrams. Depending on the conditions there can be competitive or cooperative nucleation of the two kinds of phases. The model also shows that small differences in volume changes can have noticeable effects on the early stages of martensite formation and on the resulting microstructures. -- Long version of cond-mat/0605577 -- Keywords: Ginzburg-Landau, martensite, pearlite, spinodal decomposition, shape memory, microstructures, TTT diagram, CCT diagram, elastic compatibilityComment: 10 pages, 13 figures, long version of cond-mat/0605577. Physical Review B, to appear in volume 75 (2007
    • …
    corecore