336 research outputs found

    FLOTATION MATERIALS FOR AERIAL DELIVERY OF ACETAMINOPHEN TOXIC BAITS TO BROWN TREESNAKES

    Get PDF
    Polyvinyl chloride (PVC) tubes are effective bait stations for delivering dead neonatal mice (DNM) treated with the oral toxicant, 80 mg acetaminophen, to brown treesnakes (Boiga irregularis) in accessible jungle forest on Guam. However, PVC tubes are not practical for delivery of baits to remote areas of jungle or the forest canopy. Further, it is important that baits entangle in the canopy and not fall to the ground where they can be scavenged by non-target animals such as crabs. Data from helicopter aerial deployment of untreated DNM with radio transmitters that landed on the ground in areas of high coconut crab (Birgus latro) and hermit crab (Coenobita spp.) abundance showed that 67% of DNM were taken by crabs and 11% by monitor lizards (Varanus indicus). In contrast, in low crab abundance areas crabs took 24% of the DNM that landed on the ground. It is evident from these data that a flotation system that delivers DNM to the canopy is needed; otherwise non-target animals will remove DNM, making them unavailable for snakes. Seven aerial flotation devices were evaluated. Promising aerial devices are two types of commercial cardboard paper streamers that resulted in 75% - 85% of the DNM becoming entangled in the canopy

    Characterizing organic particle impacts on inert metal surfaces: Foundations for capturing organic molecules during hypervelocity transits of Enceladus plumes

    Get PDF
    The presence and accessibility of a sub‐ice‐surface saline ocean at Enceladus, together with geothermal activity and a rocky core, make it a compelling location to conduct further, in‐depth, astrobiological investigations to probe for organic molecules indicative of extraterrestrial life. Cryovolcanic plumes in the south polar region of Enceladus enable the use of remote in situ sampling and analysis techniques. However, efficient plume sampling and the transportation of captured organic materials to an organic analyzer present unique challenges for an Enceladus mission. A systematic study, accelerating organic ice‐particle simulants into soft inert metal targets at velocities ranging 0.5–3.0 km s−1, was carried out using a light gas gun to explore the efficacy of a plume capture instrument. Capture efficiency varied for different metal targets as a function of impact velocity and particle size. Importantly, organic chemical compounds remained chemically intact in particles captured at speeds up to ~2 km s−1. Calibration plots relating the velocity, crater, and particle diameter were established to facilitate future ice‐particle impact experiments where the size of individual ice particles is unknown

    Feasibility of Enceladus plume biosignature analysis: Successful capture of organic ice particles in hypervelocity impacts

    Get PDF
    Enceladus is a compelling destination for astrobiological analyses due to the presence of simple and complex organic constituents in cryovolcanic plumes that jet from its subsurface ocean. Enceladus plume capture during a flyby or orbiter mission is an appealing method for obtaining pristine ocean samples for scientific studies of this organic content because of the high science return, reduced planetary protection challenges, and lower risk and expense compared to a landed mission. However, this mission profile requires sufficient amounts of plume material for sensitive analysis. To explore the feasibility and optimization of the required capture systems, light gas gun experiments were carried out to study organic ice particle impacts on indium surfaces. An organic fluorescent tracer dye, Pacific Blueℱ, was dissolved in borate buffer and frozen into saline ice projectiles. During acceleration, the ice projectile breaks up in flight into micron‐sized particles that impact the target. Quantitative fluorescence microscopic analysis of the targets demonstrated that under certain impact conditions, 10–50% of the entrained organic molecules were captured in over 25% of the particle impacts. Optimal organic capture was observed for small particles (d ~ 5–15 ”m) with velocities ranging from 1 to 2 km s−1^{−1}. Our results reveal how organic capture efficiency depends on impact velocity and particle size; capture increases as particles get smaller and as velocity is reduced. These results demonstrate the feasibility of collecting unmodified organic molecules from the Enceladus ice plume for sensitive analysis with modern in situ instrumentation such as microfluidic capillary electrophoresis (CE) analysis with ppb organic sensitivity

    A comparison of ultrafast and conventional spectral Doppler ultrasound to measure cerebral blood flow velocity during inguinal hernia repair in infants

    Get PDF
    Background: Ultrafast cerebral Doppler ultrasound enables simultaneous quantification and visualization of cerebral blood flow velocity. The aim of this study is to compare the use of conventional and ultrafast spectral Doppler during anesthesia and their potential to show the effect of anesthesiologic procedures on cerebral blood flow velocities, in relation to blood pressure and cerebral oxygenation in infants undergoing inguinal hernia repair. Methods: A single-center prospective observational cohort study in infants up to six months of age. We evaluated conventional and ultrafast spectral Doppler cerebral ultrasound measurements in terms of number of successful measurements during the induction of anesthesia, after sevoflurane induction, administration of caudal analgesia, a fluid bolus and emergence of anesthesia. Cerebral blood flow velocity was quantified in pial arteries using conventional spectral Doppler and in the cerebral cortex using ultrafast Doppler by peak systolic velocity, end diastolic velocity and resistivity index.Results: Twenty infants were included with useable conventional spectral Doppler images in 72/100 measurements and ultrafast Doppler images in 51/100 measurements. Intraoperatively, the success rates were 53/60 (88.3%) and 41/60 (68.3%), respectively. Cerebral blood flow velocity increased after emergence for both conventional (end diastolic velocity, from 2.01 to 2.75 cm/s, p &lt; 0.001) and ultrafast spectral Doppler (end diastolic velocity, from 0.59 to 0.94 cm/s), whereas cerebral oxygenation showed a reverse pattern with a decrease after the emergence of the infant (85% to 68%, p &lt; 0.001). Conclusion: It is possible to quantify cortical blood flow velocity during general anesthesia using conventional and ultrafast spectral Doppler cerebral ultrasound. Cerebral blood flow velocity and blood pressure decreased, while regional cerebral oxygenation increased during general anesthesia. Ultrafast spectral Doppler ultrasound offers novel insights into perfusion within the cerebral cortex, unattainable through conventional spectral ultrasound. Yet, ultrafast Doppler is curtailed by a lower success rate and a more rigorous learning curve compared to conventional method.</p

    A comparison of ultrafast and conventional spectral Doppler ultrasound to measure cerebral blood flow velocity during inguinal hernia repair in infants

    Get PDF
    Background: Ultrafast cerebral Doppler ultrasound enables simultaneous quantification and visualization of cerebral blood flow velocity. The aim of this study is to compare the use of conventional and ultrafast spectral Doppler during anesthesia and their potential to show the effect of anesthesiologic procedures on cerebral blood flow velocities, in relation to blood pressure and cerebral oxygenation in infants undergoing inguinal hernia repair. Methods: A single-center prospective observational cohort study in infants up to six months of age. We evaluated conventional and ultrafast spectral Doppler cerebral ultrasound measurements in terms of number of successful measurements during the induction of anesthesia, after sevoflurane induction, administration of caudal analgesia, a fluid bolus and emergence of anesthesia. Cerebral blood flow velocity was quantified in pial arteries using conventional spectral Doppler and in the cerebral cortex using ultrafast Doppler by peak systolic velocity, end diastolic velocity and resistivity index.Results: Twenty infants were included with useable conventional spectral Doppler images in 72/100 measurements and ultrafast Doppler images in 51/100 measurements. Intraoperatively, the success rates were 53/60 (88.3%) and 41/60 (68.3%), respectively. Cerebral blood flow velocity increased after emergence for both conventional (end diastolic velocity, from 2.01 to 2.75 cm/s, p &lt; 0.001) and ultrafast spectral Doppler (end diastolic velocity, from 0.59 to 0.94 cm/s), whereas cerebral oxygenation showed a reverse pattern with a decrease after the emergence of the infant (85% to 68%, p &lt; 0.001). Conclusion: It is possible to quantify cortical blood flow velocity during general anesthesia using conventional and ultrafast spectral Doppler cerebral ultrasound. Cerebral blood flow velocity and blood pressure decreased, while regional cerebral oxygenation increased during general anesthesia. Ultrafast spectral Doppler ultrasound offers novel insights into perfusion within the cerebral cortex, unattainable through conventional spectral ultrasound. Yet, ultrafast Doppler is curtailed by a lower success rate and a more rigorous learning curve compared to conventional method.</p

    Infrared spectroscopy of phytochrome and model pigments

    Get PDF
    Fourier-transform infrared difference spectra between the red-absorbing and far-red-absorbing forms of oat phytochrome have been measured in H2O and 2H2O. The difference spectra are compared with infrared spectra of model compounds, i.e. the (5Z,10Z,15Z)- and (5Z,10Z,15E)-isomers of 2,3,7,8,12,13,17,18-octaethyl-bilindion (Et8-bilindion), 2,3-dihydro-2,3,7,8,12,13,17,18-octaethyl-bilindion (H2Et8-bilindion), and protonated H2Et8-bilindion in various solvents. The spectra of the model compounds show that only for the protonated forms can clear differences between the two isomers be detected. Since considerable differences are present between the spectra of Et8-bilindion and H2Et8-bilindion, it is concluded that only the latter compound can serve as a model system of phytochrome. The 2H2O effect on the difference spectrum of phytochrome supports the view that the chromophore in red-absorbing phytochrome is protonated and suggests, in addition, that it is also protonated in far-red-absorbing phytochrome. The spectra show that protonated carboxyl groups are influenced. The small amplitudes in the difference spectra exclude major changes of protein secondary structure

    Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC

    Get PDF
    Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ? 98 %). All samples were analyzed following injection (100 ?l) into a Synergi Polar-RP 80 Å (250 × 4.6 mm) reversed-phase column with a particle size of 10 ?m, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients

    The new political economy of higher education: between distributional conflicts and discursive stratification

    Get PDF
    The higher education sector has been undergoing a far-reaching institutional re-orientation during the past two decades. Many adjustments appear to have strengthened the role of competition in the governance of higher education, but the character of the sector?s emerging new political economy has frequently remained unclear. Serving as the introduction for the special issue, this article makes the case for a multidimensional strategy to probe higher education?s competitive transformation. In terms of conceptualizing the major empirical shifts, we argue for analyzing three core phenomena: varieties of academic capitalism, the discursive construction of inequality, and the transformation of hierarchies in competitive settings. With respect to theoretical tools, we emphasize the complementary contributions of institutional, class-oriented, and discourse analytical approaches. As this introduction elaborates and the contributions to the special issue demonstrate, critical dialog among different analytical traditions over the interpretation of change is crucial for improving established understandings. Arguably, it is essential for clarifying the respective roles of capitalist power and hierarchical rule in the construction of the sector?s new order
    • 

    corecore