3,003 research outputs found

    Herd movements: The exchange of livestock breeds and genes between North and South

    Get PDF

    Pressure buildup during CO2 injection in brine aquifers using the Forchheimer equation

    Get PDF
    If geo-sequestration of CO2 is to be employed as a key emissions reduction method in the global effort to mitigate climate change, simple yet robust screening of the risks of disposal in brine aquifers will be needed. There has been significant development of simple analytical and semi-analytical techniques to support screening analysis and performance assessment for potential carbon sequestration sites. These techniques have generally been used to estimate the size of CO2 plumes for the purpose of leakage rate estimation. A common assumption has been that both the fluids and the geological formation are incompressible. Consequently, calculation of pressure distribution requires the specification of an arbitrary radius of influence. In this talk, a new similarity solution is derived using the method of matched asymptotic expansions. By allowing for slight compressibility in the fluids and formation, the solution improves on previous work by not requiring the specification of an arbitrary radius of influence. A large-time approximation of the solution is then extended to account for non-Darcy inertial effects using the Forchheimer equation. Both solutions are verified by comparison with finite difference solutions. The results show that inertial losses will often be comparable, and sometimes greater than, the viscous Darcy-like losses associated with the brine displacement, although this is strongly dependent on formation porosity and permeability

    Report No. 31: The Role of Social Protection as an Economic Stabiliser: Lessons from the Current Crisis

    Get PDF
    Report based on a study conducted for the European Parliament, Bonn 2010 (188 pages)

    In vivo imaging of the tonoplast intrinsic protein family in Arabidopsis roots

    Get PDF
    Background: Tonoplast intrinsic proteins (TIPs) are widely used as markers for vacuolar compartments in higher plants. Ten TIP isoforms are encoded by the Arabidopsis genome. For several isoforms, the tissue and cell specific pattern of expression are not known. Results: We generated fluorescent protein fusions to the genomic sequences of all members of the Arabidopsis TIP family whose expression is predicted to occur in root tissues (TIP1;1 and 1;2; TIP2;1, 2;2 and 2;3; TIP4;1) and expressed these fusions, both individually and in selected pairwise combinations, in transgenic Arabidopsis. Analysis by confocal microscopy revealed that TIP distribution varied between different cell layers within the root axis, with extensive co-expression of some TIPs and more restricted expression patterns for other isoforms. TIP isoforms whose expression overlapped appeared to localise to the tonoplast of the central vacuole, vacuolar bulbs and smaller, uncharacterised structures. Conclusion: We have produced a comprehensive atlas of TIP expression in Arabidopsis roots, which reveals novel expression patterns for not previously studied TIPs

    Prediction of stored energy in polycrystalline materials during cyclic loading

    Get PDF
    AbstractThe effect of initial texture on the stored energy is investigated. Uniaxially loaded polycrystalline materials with initial textures based on the Goss component and the Brass component are analyzed. For reference purposes a single crystal and an initial isotropic crystal orientation distribution are also analyzed. Special attention is directed at the thermomechanical behavior of polycrystalline material during cyclic loading, the temperature evolution and change in stored energy are studied. Cyclic loading of Cook’s membrane is also considered. The simulations are done using a rate-dependent crystal plasticity model for large deformations formulated within a thermodynamic framework. It is shown that incorporation of the latent-hardening into the Helmholtz free energy function and use of evolution laws of appropriate form allows a thermodynamically consistent heat generation due to plastic work
    corecore