7,162 research outputs found

    Internal and External Fluctuation Activated Non-equilibrium Reactive Rate Process

    Full text link
    The activated rate process for non-equilibrium open systems is studied taking into account both internal and external noise fluctuations in a unified way. The probability of a particle diffusing passing over the saddle point and the rate constant together with the effective transmission coefficient are calculated via the method of reactive flux. We find that the complexity of internal noise is always harmful to the diffusion of particles. However the external modulation may be beneficial to the rate process.Comment: 10 pages, 1 figure (containing 2 subgraphs). arXiv admin note: text overlap with arXiv:cond-mat/9911028 by other author

    A Measurement of Land Impressions on Fired Bullets

    Get PDF

    A Measurement of Land Impressions on Fired Bullets

    Get PDF

    The Rifling Meter

    Get PDF

    The Rifling Meter

    Get PDF

    The Comparison Camera

    Get PDF

    Rigorous Calculations of Non-Abelian Statistics in the Kitaev Honeycomb Model

    Get PDF
    We develop a rigorous and highly accurate technique for calculation of the Berry phase in systems with a quadratic Hamiltonian within the context of the Kitaev honeycomb lattice model. The method is based on the recently found solution of the model which uses the Jordan-Wigner-type fermionization in an exact effective spin-hardcore boson representation. We specifically simulate the braiding of two non-Abelian vortices (anyons) in a four vortex system characterized by a two-fold degenerate ground state. The result of the braiding is the non-Abelian Berry matrix which is in excellent agreement with the predictions of the effective field theory. The most precise results of our simulation are characterized by an error on the order of 10−510^{-5} or lower. We observe exponential decay of the error with the distance between vortices, studied in the range from one to nine plaquettes. We also study its correlation with the involved energy gaps and provide preliminary analysis of the relevant adiabaticity conditions. The work allows to investigate the Berry phase in other lattice models including the Yao-Kivelson model and particularly the square-octagon model. It also opens the possibility of studying the Berry phase under non-adiabatic and other effects which may constitute important sources of errors in topological quantum computation.Comment: 27 pages, 9 figures, 3 appendice

    Fully quantum mechanical dynamic analysis of single-photon transport in a single-mode waveguide coupled to a traveling-wave resonator

    Full text link
    We analyze the dynamics of single photon transport in a single-mode waveguide coupled to a micro-optical resonator using a fully quantum mechanical model. We examine the propagation of a single-photon Gaussian packet through the system under various coupling conditions. We review the theory of single photon transport phenomena as applied to the system and we develop a discussion on the numerical technique we used to solve for dynamical behavior of the quantized field. To demonstrate our method and to establish robust single photon results, we study the process of adiabatically lowering or raising the energy of a single photon trapped in an optical resonator under active tuning of the resonator. We show that our fully quantum mechanical approach reproduces the semi-classical result in the appropriate limit and that the adiabatic invariant has the same form in each case. Finally, we explore the trapping of a single photon in a system of dynamically tuned, coupled optical cavities.Comment: 24 pages, 10 figure
    • …
    corecore