2,095 research outputs found

    Shock response of granular Ni/Al nanocomposites

    Get PDF
    Intermolecular reactive composites find diverse applications in defense, microelectronics and medicine, where strong, localized sources of heat are required. However, fundamental questions of the initiation and propagation mechanisms on the nanoscale remain to be addressed, which is a roadblock to their widespread application. The performance and response of these materials is predominantly influenced by their nanostructure, and the complex interplay of mechanical, thermal, and chemical processes that occur at very short time scales. Motivated by experimental work which has shown that high-energy ball milling (which leads to the formation of granular composites of Ni/Al) can significantly improve the reactivity as well as the ease of ignition of Ni/Al intermetallic composites, we present large scale (~41 million atom) molecular dynamics simulations of the shock response of granular Ni/Al composites, which are designed to mimic the microstructure that is obtained post mechanical milling. The shock response of granular composite materials is not well understood, and much less so for reactive nano-composites. Fully atomistic simulations such as these provide a unique insight into the subgrain response of granular media. Shock propagation in these porous, lamellar materials is observed to be extremely diffuse at low impact velocities, leading to large inhomogeneity in the local stress states of the material; whereas at higher impact velocities, the shock front is observed to be much sharper. We relate this transition in the nature of the shock, to the mechanism of void collapse, with plastic deformation dominant at slow impacts but jetting into the voids dominant at higher impact velocities

    Effect of confinement on the mechanics of a swelling hydrogel bead

    Full text link
    We recast the problem of hydrogel swelling under physical constraints as an energy optimization problem. We apply this approach to compute equilibrium shapes of hydrogel spheres confined within a jammed matrix of rigid beads, and interpret the results to determine how confinement modifies the mechanics of swollen hydrogels. In contrast to the unconfined case, we find a spatial separation of strains within the bulk of the hydrogel as strain becomes localized to an outer region. We also explore the contact mechanics of the gel, finding a transition from Hertzian behavior to non-Hertzian behavior as a function of swelling. Our model, implemented in the Morpho shape optimization environment, can be applied in any dimension, readily adapted to diverse swelling scenarios and extended to use other energies in conjunction

    UR-159 - A Systematic Literature Review on Dark Web

    Get PDF
    The dark web is often discussed in taboo by many who are unfamiliar with the subject. However, this paper takes a dive into the skeleton of what constructs the dark web by compiling the research of published essays. The Onion Router (TOR) and other discussed browsers are specialized web browsers that provide anonymity by going through multiple servers and encrypted networks between the host and client, hiding the IP address of both ends. This provides difficulty in terms of controlling or monitoring the dark web, leading to its popularity in criminal underworlds. In this work, we provide an overview of data mining and penetration testing tools that are being widely used to crawl and collect data. We compare the tools to provide strengths and weaknesses of the tools while providing challenges of harnessing massive data from dark web using crawlers and penetration testing tools including machine learning (ML) techniques. Despite the effort to crawl dark web has progressed, there are still rooms to advance existing approaches to combat the ever-changing landscape of the dark web

    Simultaneous Nasopharyngeal Carriage of Two Pneumococcal Multilocus Sequence Types with a Serotype 3 Phenotype

    Get PDF
    Knowledge of the epidemiology of pneumococcal disease in Bolivia is sparse, and Multilocus Sequence Typing (MLST) of isolates has not been previously possible. Beni state has until recently been a geographically isolated region of the Bolivian Amazon basin and is a region of significant poverty. During June and July 2007, we performed a pneumococcal carriage study recruiting over 600 schoolchildren in two towns in the Beni state. Here, we describe the unique identification of simultaneous nasopharyngeal carriage of two pneumococcal multilocus sequence types with a serotype 3 phenotype within a single subject

    Assessment of Alternative Sinusoidal Rumble Stripe Construction

    Get PDF
    Studies have shown that rumble strips installed on a roadway significantly reduce the number of accidents caused by lane departures. However, when a vehicle engages the strips, a loud exterior noise is generated in addition to the alerting in-cabin noise. The extraneous exterior noise can travel at least several hundred feet at a volume which is considered a nuisance by nearby residents. In the recent years, a new rumble strip design in the form of a sine wave has been reported to produce low exterior noise, while still providing adequate warnings for drivers. This study evaluated three sinusoidal rumble strips of different wavelengths—12, 18, and 24 inch. The rumble strips were quantitatively compared by measuring the noise inside and outside of the vehicle as well as the vibration of the front seat frame. Results showed that the sound responses varied across the vehicles. From the exterior, all three sinusoidal rumble strips were quieter than the traditional rumble strips, with a reduction in sound power by 5 to 11 dBA. Interior cabin sound level was similar to standard rumble strips, with some cases increasing between 2 and 9 dBA. The retro reflectivity tests also exceed the minimum threshold set by INDOT specifications. Sinusoidal rumbles strips are a promising technology that is well suited for lane departure warning in residential areas. The results from this study suggest that the 12 in wavelength has a desirable decrease in exterior noise while still maintaining adequate lane departure warning to the driver

    Extraction of Vehicle CAN Bus Data for Roadway Condition Monitoring

    Get PDF
    Obtaining timely information across the state roadway network is important for monitoring the condition of the roads and operating characteristics of traffic. One of the most significant challenges in winter roadway maintenance is identifying emerging or deteriorating conditions before significant crashes occur. For instance, almost all modern vehicles have accelerometers, anti-lock brake (ABS) and traction control systems. This data can be read from the Controller Area Network (CAN) of the vehicle, and combined with GPS coordinates and cellular connectivity, can provide valuable on-the-ground sampling of vehicle dynamics at the onset of a storm. We are rapidly entering an era where this vehicle data can provide an agency with opportunities to more effectively manage their systems than traditional procedures that rely on fixed infrastructure sensors and telephone reports. This data could also reduce the density of roadway weather information systems (RWIS), similar to how probe vehicle data has reduced the need for micro loop or side fire sensors for collecting traffic speeds

    Cyclin D1-mediated microRNA expression signature predicts breast cancer outcome

    Get PDF
    Background: Genetic classification of breast cancer based on the coding mRNA suggests the evolution of distinct subtypes. Whether the non-coding genome is altered concordantly with the coding genome and the mechanism by which the cell cycle directly controls the non-coding genome is poorly understood. Methods: Herein, the miRNA signature maintained by endogenous cyclin D1 in human breast cancer cells was defined. In order to determine the clinical significance of the cyclin D1-mediated miRNA signature, we defined a miRNA expression superset from 459 breast cancer samples. We compared the coding and non-coding genome of breast cancer subtypes. Results: Hierarchical clustering of human breast cancers defined four distinct miRNA clusters (G1-G4) associated with distinguishable relapse-free survival by Kaplan-Meier analysis. The cyclin D1-regulated miRNA signature included several oncomirs, was conserved in multiple breast cancer cell lines, was associated with the G2 tumor miRNA cluster, ERα+ status, better outcome and activation of the Wnt pathway. The coding and non-coding genome were discordant within breast cancer subtypes. Seed elements for cyclin D1-regulated miRNA were identified in 63 genes of the Wnt signaling pathway including DKK. Cyclin D1 restrained DKK1 via the 3\u27UTR. In vivo studies using inducible transgenics confirmed cyclin D1 induces Wnt-dependent gene expression. Conclusion: The non-coding genome defines breast cancer subtypes that are discordant with their coding genome subtype suggesting distinct evolutionary drivers within the tumors. Cyclin D1 orchestrates expression of a miRNA signature that induces Wnt/β-catenin signaling, therefore cyclin D1 serves both upstream and downstream of Wnt/β-catenin signaling

    ELF3 controls thermoresponsive growth in Arabidopsis

    Get PDF
    Plant development is highly responsive to ambient temperature, and this trait has been linked to the ability of plants to adapt to climate change [1]. The mechanisms by which natural populations modulate their thermoresponsiveness are not known [2]. To address this, we surveyed Arabidopsis accessions for variation in thermal responsiveness of elongation growth and mapped the corresponding loci. We find that the transcriptional regulator EARLY FLOWERING3 (ELF3) controls elongation growth in response to temperature. Through a combination of modeling and experiments, we show that high temperature relieves the gating of growth at night, highlighting the importance of temperature-dependent repressors of growth. ELF3 gating of transcriptional targets responds rapidly and reversibly to changes in temperature. We show that the binding of ELF3 to target promoters is temperature dependent, suggesting a mechanism where temperature directly controls ELF3 activity

    Cyclin D1 Restrains Oncogene-Induced Autophagy by Regulating the AMPK-LKB1 Signaling Axis.

    Get PDF
    Autophagy activated after DNA damage or other stresses mitigates cellular damage by removing damaged proteins, lipids, and organelles. Activation of the master metabolic kinase AMPK enhances autophagy. Here we report that cyclin D1 restrains autophagy by modulating the activation of AMPK. In cell models of human breast cancer or in a cyclin D1-deficient model, we observed a cyclin D1-mediated reduction in AMPK activation. Mechanistic investigations showed that cyclin D1 inhibited mitochondrial function, promoted glycolysis, and reduced activation of AMPK (pT172), possibly through a mechanism that involves cyclin D1-Cdk4/Cdk6 phosphorylation of LKB1. Our findings suggest how AMPK activation by cyclin D1 may couple cell proliferation to energy homeostasis
    corecore