7,176 research outputs found

    Optical vortex mode generation by nanoarrays with a tailored geometry

    Get PDF
    Light generated with orbital angular momentum, commonly known as an optical vortex, is widely achieved by modifying the phase structure of a conventional laser beam through the utilization of a suitable optical element. In recent research, a process has been introduced that can produce electromagnetic radiation with a helical wave-front directly from a source. The chirally driven optical emission originates from a hierarchy of tailored nanoscale chromophore arrays arranged with a specific propeller-like geometry and symmetry. In particular, a nanoarray composed of n particles requires each component to be held in a configuration with a rotation and associated phase shift of 2 π/n radians with respect to its neighbor. Following initial electronic excitation, each such array is capable of supporting delocalized doubly degenerate excitons, whose azimuthal phase progression is responsible for the helical wave-front. Under identified conditions, the relaxation of the electronically-excited nanoarray produces structured light in a spontaneous manner. Nanoarrays of escalating order, i.e. those containing an increasing number of components, enable access to a set of topological charges of higher order. Practical considerations for the development of this technique are discussed, and potential new applications are identified. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE)

    Expanded horizons for generating and exploring optical angular momentum in vortex structures

    Get PDF
    Spin provides for a well-known extension to the information capacity of nanometer-scale electronic devices. Spin transfer can be effected with high fidelity between quantum dots, this type of emission being primarily associated with emission dipoles. However, in seeking to extend the more common spectroscopic connection of dipole transitions with orbital angular momentum, it has been shown impossible to securely transmit information on any other multipolar basis – partly because point detectors are confined to polarization measurement. Standard polarization methods in optics provide for only two independent degrees of freedom, such as the circular states of opposing handedness associated with photon spin. Complex light beams with structured wave-fronts or vector polarization do, however, offer a basis for additional degrees of freedom, enabling individual photons to convey far more information content. A familiar example is afforded by Laguerre-Gaussian modes, whose helically twisted wave-front and vortex fields are associated with orbital angular momentum. Each individual photon in such a beam has been shown to carry the entire spatial helical-mode information, supporting an experimental basis for sorting beams of different angular momentum content. One very recent development is a scheme for such optical vortices to be directly generated through electronic relaxation processes in structured molecular chromophore arrays. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE)

    Light Assisted Collisional Loss in a 85/87^{85/87}Rb Ultracold Optical Trap

    Full text link
    We have studied hetero- and homonuclear excited state/ground state collisions by loading both 85^{85}Rb and 87^{87}Rb into a far off resonant trap (FORT). Because of the relatively weak confinement of the FORT, we expect the hyperfine structure of the different isotopes to play a crucial role in the collision rates. This dependence on hyperfine structure allows us to measure collisions associated with long range interatomic potentials of different structure: such as long and short ranged; or such as purely attractive, purely repulsive, or mixed attractive and repulsive. We observe significantly different loss rates for different excited state potentials. Additionally, we observe that some collisional channels' loss rates are saturated at our operating intensities (~15 mW/cm2^{2}). These losses are important limitations in loading dual isotope optical traps.Comment: about 8 pages, 5 figure

    Hyper-Rayleigh scattering in centrosymmetric systems

    Get PDF
    Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E13, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E12M1 and E12E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E12E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties

    Recent Advances to Estimation of Fixed-Interface Modal Models Using Dynamic Substructuring

    Get PDF
    In 2010, Allen & Mayes proposed to estimate the fixed-interface modes of a structure by measuring the modes of the structure bolted to a fixture and then applying constraints to the fixture using the transmission simulator method. While the method proved useful, and has indeed been used in studies since that point, a few peculiarities were noted. First, in some cases the estimated fixed-base natural frequencies were observed to converge very slowly to the true values (in simulated experiments) as the number of constraints was increased. To formulate these constraints, prior studies used only the free-interface modes of the fixture or the measured modes of the assembly. This work extends that to consider other sets of constraints, showing improved results. Furthermore, in some prior studies it has been observed that there were errors of more than 10% in the natural frequencies even when the fixture motion was hundreds of times smaller than the motion of the structure of interest (and so it had presumably been removed). This work explores this phenomenon, seeking to use the strain energy in the fixture, to the extent that it can be estimated using a test-analysis model for the fixture, as a metric to predict frequency error. The proposed methods are explored by applying them to simulated measurements from a beam and from the NASA Space Launch System coupled to the Mobile Launcher

    Raman scattering mediated by neighboring molecules

    Get PDF
    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process

    Development of a Friction Rig and Experimental Results

    Get PDF
    The development of a friction rig, which is integrated into a milling machine for testing the frictional characteristics of various types of materials and specimen shapes are described. This is followed by the experimental technique used to measure the friction coefficient for different experimental conditions. The results obtained indicate the frictional coefficient obtained changes with the specimen type, contact area and lubrication condition. The results obtained are also compared to available published results. The discussions and conclusions related to the development and experimental results are finally presented
    • …
    corecore