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ABSTRACT 
  
Spin provides for a well-known extension to the information capacity of nanometer-scale electronic devices.  Spin 
transfer can be effected with high fidelity between quantum dots, this type of emission being primarily associated with 
emission dipoles.  However, in seeking to extend the more common spectroscopic connection of dipole transitions with 
orbital angular momentum, it has been shown impossible to securely transmit information on any other multipolar basis 
– partly because point detectors are confined to polarization measurement.  Standard polarization methods in optics 
provide for only two independent degrees of freedom, such as the circular states of opposing handedness associated with 
photon spin.  Complex light beams with structured wave-fronts or vector polarization do, however, offer a basis for 
additional degrees of freedom, enabling individual photons to convey far more information content.  A familiar example 
is afforded by Laguerre-Gaussian modes, whose helically twisted wave-front and vortex fields are associated with orbital 
angular momentum.  Each individual photon in such a beam has been shown to carry the entire spatial helical-mode 
information, supporting an experimental basis for sorting beams of different angular momentum content.  One very 
recent development is a scheme for such optical vortices to be directly generated through electronic relaxation processes 
in structured molecular chromophore arrays. 
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1.  INTRODUCTION 

 
It is widely appreciated that spin offers a useful extension to the information capacity of nanometer-scale electronic 
devices, and that it is possible for spin transfer to effect high fidelity communication between component units such as 
quantum dots [1–5].  The emission from these components is largely associated with emission dipoles, and to secure 
emission of intricate multipolar form might suggest the use of lower symmetry, molecular systems; however, it emerges 
that such emission cannot convey unambiguous information on multipolar content [6,7].  In the field of optics, where 
standard polarization methods provide for two independent degrees of freedom to be communicated by photons, circular 
states of opposing handedness associated with photon spin are the most obvious candidates, although any two states 
corresponding to diametrically opposite positions on the Poincaré sphere can provide an equally valid basis.  
Nonetheless, it has been shown that a whole family of optical chirality measures represents no other degrees of freedom 
than that of spin angular momentum [8].  Various forms of complex light with structured wave-fronts or vector (e.g. 
radial or azimuthal) polarization do, however, provide for the long-sought additional degrees of freedom, enabling 
individual photons to convey a far greater information content than was previously thought possible.  There is particular 
interest in Laguerre-Gaussian modes, whose helically twisted wave-front is associated with orbital angular momentum, 
in addition to any spin due to polarization.  Experiments demonstrate that single photons carry the entire spatial helical-
mode information, supporting an experimental basis for sorting beams of different angular momentum content [9]. 
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2.  QUANTUM DOT SPIN TRANSFER 
 

For the electron, the familiar spin-up/spin-down state designation signifies and provides for a two-level basis in quantum 
theory, affording a potential basis for the transmission of qubit information [6,7].  The underlying principle is a 
separation of spin S and orbital angular momentum L which owes its origin to the commutation of the Hamiltonian and 
L2 operators – itself a corollary of the radial symmetry in atoms (although a relativistic formulation makes it apparent 
that spin-orbit coupling undermines complete fidelity in such a separation).  To see how this principle applies in a simple 
solid state context it is instructive to consider a quantum dot (QD) system, which exemplifies the association of electron 
spin information transfer with circularly polarized light.  The nature of the electronic energy level structure in quantum 
dots is responsible for their distinctive and widely deployed optical characteristics – in particular the discrete, size-
tunable, and intense character of quasi two-level exciton transitions.  Such transitions are usually dipolar in nature.  
Particular interest is drawn by the fine structure that underlies some of these transitions – for example in the 1S3/2−1Se 
transition observed in CdSe quantum dots [12].  The selection rules for excitation by circularly polarized light allow for 
exciton states of specific spin to be optically oriented, and in consequence optically bright exciton states can be 
distinguished using circularly polarizations – provided the QDs are suitably oriented.   
 
Electronic energy can migrate within a system of quantum dots by the process of resonance energy transfer (RET) [13].  
It has been established by an analysis based on QED (quantum electrodynamics) that the spin state of an exciton can be 
transmitted or reversed by RET between suitably oriented quantum dots [3].  This analysis identifies contributions to the 
quantum amplitude corresponding to coupling by left- and right-circularly polarized virtual photons.  The plots shown in 
Fig. 1 exhibit the result of rotating one quantum dot relative to the other: when the two QDs have parallel transition 
moments, the exciton spin orientation is transmitted with complete fidelity from one QD to the other; in contrast, an 
antiparallel configuration provides for a reversal of the spin.  This signifies, for example, that electronic energy migration 
along a QD column oriented in a common direction will faithfully retain information on spin orientation from the initial 
donor particle.  In the long-range asymptote, it is clear that angular momentum should indeed be conserved about the 
propagation direction of the photon, coinciding with the displacement vector of adjacent quantum dots.  However, the 
QED calculation additionally reveals the less obvious finding that exactly the same feature operates in the near-zone 
region, even though the coupling cannot in this case be ascribed to real photon propagation. Energy migration along a 
column of quantum dots with a common orientation preserves spin information; the observation of spin reversal between 
alternately inverted quantum dots is another manifestation of the same principle. 

 

 
 

Figure 1.  Variation in the rate of quantum dot energy transfer, over one complete cycle of the mutual orientation: (a) spin antiparallel; 
(b) spin parallel. 
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3.  MULTIPOLAR EMISSION AND DETECTION 

 
The coupling between quantum dots represents a principle that invites extension beyond the two-state case where 
excitons can have a simple spin up or spin-down designation and the transitions all have dipolar character.  Taking a 
more general perspective, multipolar transitions might appear to offer an opportunity to broaden this basis, without 
involving electron spin.  However, it has been shown that the transfer of an associated angular momentum does not in 
general occur with high fidelity between any individual energy donor and acceptor [6].  The underlying reason is that 
multipolar decay does not itself produce photons measurably imprinted with the corresponding angular momentum – the 
character of the emission is only registered statistically, in the spatial distribution of the emerging radiation.  Any 
individually positioned detector is confined to polarization measurement. 
 
For molecules, or atoms placed in anisotropic environments, an additional tier of complexity arises.  In such systems full 
rotational symmetry is compromised, and accordingly most electronic states cannot be uniquely characterized in terms of 
angular momentum, nor can each electronic transition be unambiguously associated with a specific angular momentum 
change; a given transition will commonly be allowed by more than one form of multipolar coupling.  Here, it proves 
impossible to unambiguously determine, with any conventional detector, the multipolar character of any decay transition 
associated with its generation [6,7].   
 
As in the case of the coupled quantum dots, the analysis here begins with a general expression for the overall emission 
and detection process.  The focus is on the electrodynamic coupling between two transition electric multipoles Em and 
En, the former signifying the decay of a source particle A and the latter, excitation of the detector B (using the shorthand 
En to denote an electric multipolar interaction of order n, E2 denoting electric quadrupole, for example).  The quantum 
amplitude for the coupling result can be generally cast as;   
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using the convention of implied summation over repeated Cartesian (lower-case subscript) indices.  In equation (1), ( )m

ξE  
is the transition multipole tensor of order m for particle ζ, and the following is a series expansion for the coupling tensor 
that engages Em source emission at A with En detection at B; 
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Here, R is the distance of B from A, k is the optical wave-number for the conveyed energy, and the entire tensor and 
angular momentum character is distributed between individual ( ) ˆ( )pW R  tensors, in each of which the superscript 
identifies the associated inverse power of kR.   
 
Focusing on the E2-E1 case for example, where the emitter undergoes an electric quadrupole decay and the detector has 
the standard dipole form, i.e. m = 2, n = 1, the index p on the summation in equation (2) runs from 1 to 2+1+1, signifying 
that the coupling has terms running from R-1 to R-4.  Thus it emerges that the coupling accommodates the following non-
zero angular momentum contributions:  
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p = 1 (R-1): j = 1,  3;      p = 2 (R-2): j = 1,  3;       p = 3 (R-3): j = 3;      p = 4 (R-4): j = 3.  
 
Here, the short-range contribution (p = 4) with j = 3 is consistent with a coupling that can accommodate an exchange of 
three units of angular momentum – two engaging the source, and one the detector.  At longer distances, lower inverse 
powers of R become prominent and the coupling permits values of both j = 1 and j = 3 for the conferred orbital angular 
momentum.   
 
In general, in the wave-zone (kR >> 1), the term with the lowest inverse power of R (always R-1, associated with the 
inverse square law for the rate) dominates 

1 1... ... ( , )
m na a b bV k R , and the resulting 

1... ( , )
nb bF k R  entails a spectrum of integer 

weights in the range (0 ≤ j ≤ n).  Subject to the exclusion of alternate weights on symmetry grounds, each allowed weight 
in the generated field can deliver a corresponding quantity of angular momentum.  The multipolar electronic excitation 
of the detector necessarily engages only the irreducible component of the field that confers the requisite angular 
momentum; the implication is that the nature of the detector itself imposes an upper bound.  This discovery is perfectly 
consistent with the angular quantum uncertainty principle [14,15]: the removal of a detector from the vicinity of the 
source produces a decreasing angular uncertainty in photon propagation direction.  This is manifest in an increasing 
range of possible integer values for the angular momentum of the detected light.   
 

 
4.  THE POLARIZATION BASIS IN OPTICS 

 
In the field of optics, several different strands of research have led to a renewed optimism over the possibility of 
encoding and optically transmitting higher dimensionality information [14–21].  One feature that has aroused 
considerable recent interest is the rediscovered quantitation of ‘optical chirality’ and its associated flux for classical and 
quantum optical fields [22–25].  These conserved quantities were originally extracted from Maxwell’s equations with an 
application of Noether’s Theorem, with the earliest reporter being surprisingly dismissive of the results, surmising that 
they could have no physical significance [26].  Appealing to this earlier work, there have been more recent suggestions 
that there might exist ‘superchiral’ regions of some electromagnetic fields, exhibiting circular differential effects higher 
than that of pure circularly polarized light [27–30].  However, such suggestions have met with opposition.  Both classical 
and quantum calculations of these measures clearly indicate that optical chirality has maximum (or minimum) values for 
fields comprising solely left- or right- handed light, and therefore the term ‘superchiral’ proves redundant [31]. 
 
To address the connection between the measures of optical chirality and the well-known optical angular momentum, we 
divide the latter into spin and orbital components [32,33]: 
 
 ( )3

0 dε= × ×⎡ ⎤⎣ ⎦∫J r r E B   , (3) 

where 0ε  is the vacuum permittivity, E and B are the electric and magnetic fields respectively; r is the position vector 
and the r dependence of E(r) and B(r) is implicit.  The optical angular momentum can be constructed as the sum of the 
orbital and spin components, 
 
 ( )3

0 i id E Aε= ×∇ ⋅∫L r r  , (4) 

 ( )3
0 dε= ×∫S r E A , (5) 
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respectively.  Here A represents the electromagnetic vector potential and the Einstein summation convention is used for 
repeated indices.  It is tempting to identify, in the above separation of spin and orbital angular momenta (OAM) for light, 
a principle similar to the counterpart separation of spin and orbital angular momenta for the electron – but again there is 
a proviso, namely that the paraxial approximation can be applied.  Indeed, it is entirely wrong to assume any association 
between electronic and optical forms of orbital angular momentum. 
 
By invoking the electric-magnetic democracy the spin component is delivered in a symmetric form: 
 
 ( )30 ,

2
dε

= × +∫S r E A B × C  (6) 

   
where C is a second (pseudo)vector potential, with .= −∇×E C   By introducing the optical helicity as the projection of 
the spin onto the propagation direction, we obtain: 
 
 ( )30 .

2
h dε
= ⋅ − ⋅∫ r A B E C  (7) 

 
Eq. (6) and (7) can be written in index-contracted form as 0;Sμ

μ∂ =  the optical helicity and its flux, spin, together 
represent components of a 4-vector ( ),ch S  in Minkowski space, where c is the speed of light.  It has been shown by 
Cameron et al. that replacing the vector potentials and fields by their curls (or time-derivatives) in Eq. (6) and (7) deliver 
the optical chirality flux and the optical chirality respectively [34]: 
 
 ( ) ( )( )

2
30

2
c dε

= × ∇× − × ∇×∫φ r E B B E  (8) 

 
 3 0

0
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2 2

d εχ
μ
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⎝ ⎠
∫ r E E B B  (9) 

 
where 0μ is the magnetic permeability.  Moreover, repeated application of this prescription delivers an infinite hierarchy 
of helicity-type and spin-type measures.   
 
In the framework of quantum optics, the fields and potentials are promoted to Hilbert space operators; the 
electromagnetic vector potential for a plane wave is given by [35]: 
 

 { }
1
2

( ) ( ) ( ) ( ) †( ) ( )

, 0

( ) ( ) ( ) ( ) ,
2

i ia e a e
ckV

η η η η

η ε
⋅ − ⋅⎛ ⎞
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⎝ ⎠

∑ k r k r

k
A e k k e k kh  (10) 

 
where h  is the reduced Plank constant and V the quantization volume, while ( ) ( )a η k  is the photon annihilation operator 
for a mode with polarization η and wave-vector k.  The electric and magnetic field operators can be derived from the 
vector potential by t= −∂ ∂E A  and .= ∇×B A   The polarization vector ( ) ( )ηe k   is usually summed over a convenient 
basis set, e.g. linearly or circularly polarized light; however, we can introduce a more general pair of basis vectors.  Any 
pair of polarization vectors that sit diametrically opposed on the Poincaré sphere, Fig. 2, are orthogonal in the sense that 
( ) ( ) ( ) ( ) .n m

nmδ⋅ =e k e k   Introduction of a general polarization vector 1
ˆ ˆsin cos ,ie φθ θ= +e i j thus allows the corresponding
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where , ( )l pf r  represents the radial distribution of the LG mode with radial number p and azimuthal index l.  When 
applied to a field of mode ( ), , ,λ l pk  the operator becomes: 
 

                            
( ) ( ) ( ) ( )1 2

, ,

ˆ ˆ ˆ .lp lp
l p

L l N N⎡ ⎤= +⎣ ⎦∑
k

k k kh
   (13)           

   
In the case of plane waves, the analysis of orbital angular momentum gives a vanishing result.  However, for light 
carrying OAM, the measure takes on unbounded integer values.  Separation into spin and orbital angular momentum in 
the paraxial approximation is thus equivalent to dividing the optical angular momentum into parts that respectively 
depend on the difference, and sum, of number operators.  
 
There have been many propositions for methods that could deploy individual photons to encode information on beam 
structure – particularly topological charge (which, for LG beams, equates to the azimuthal index).  Boyd et al. have 
shown that is possible to experimentally separate beams with different l values [41], while others have shown that modal 
information encoded in single-photon states can be resolved by beam tomography [42].  The synthesis detection and 
visualization of optical vortex modes are key areas of current development [43-45].  Such studies have stimulated the 
conception of numerous schemes for quantum communication and data handling applications, but the issue of total 
information content that can be contained in these degrees of freedom is still unresolved.  In particular, any such scheme 
has to be reconciled with the angle–angular momentum uncertainty principle for photons [46].  Surprisingly this 
principle, of paramount relevance to low-number states, has seemingly received very little consideration in the literature 
to date.   
 
Mention should also be made of the growing area of surface plasmon optical vortices [47], which is one of the more 
recently discovered phenomena to emerge from the study of light conveying OAM.  As is well known, surface plasmons 
are forms of electromagnetic excitation in which the fluctuational motions of conduction electrons, generally on the 
surfaces of noble metals, are entangled with light at optical frequencies.  These plasmons are widely associated with 
strongly enhanced optical properties.  In principle it is straightforward to generate a surface plasmon optical vortex 
(SPOV) using twisted light.  For example, an LG beam impinging on a thin metallic layer will fulfill the basic 
conditions.  When such a film is adsorbed on the surface of a transparent substrate, the beam can engage with the 
conduction electrons at the surface through the process of total internal reflection, imparting a circulation of charge.  The 
light field in the vacuum region is evanescent, decaying with distance away from the film surface, but it retains the phase 
singularity of the original light beam and also the associated OAM.  To offset a linear momentum along the surface, in 
the reflection plane, it is expedient to use a counter-propagating beam geometry as shown in Fig. 3 (a), using beams with 
opposite sign l values.  Very recently an alternative method that helps overcome the need for precise beam localization 
has been demonstrated by Ku et al., based on circularly polarized plane-wave excitation of a plasmonic Archimedes 
spiral, with the SPOV formation deterministically tailored by the geometrical design [48].  Shen et al. have also 
demonstrated an effective method for measuring the OAM and intensity distribution of an SPOV using near-field 
scanning optical microscopy [49]. 
 
An atom or atoms trapped near the surface by a local SPOV field will be subject to forces associated with a potential 
energy surface in the form of an elliptical valley, its height defined by the intensity distribution.  A particularly 
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Molecular systems corresponding to such point groups have electronic state pairs in the form of degenerate excitons, 
each of which has a wavefunction with exactly the phase progression required for the production of an OAM photon.  In 
such cases, each component of a degenerate pair decays to produce radiation with an opposite sense of helical twist.  It is 
possible to secure a specific handedness of emission by causing a small shift in the symmetry of the array, by either 
embedding the emitters in an anisotropic substrate, or by deformation of the array.  Without this symmetry breaking, 
such arrays produce photons in superposition states, potentially lending insight into the study of highly entangled 
quantum systems.  
 
For an array consisting of n optical centers, with the above characteristics, the point group demands that there exist  ⎣(n–
1)/2⎦ (signifying the largest integer not greater than (n–1)/2) doubly degenerate excitons, each component of which can 
decay to produce a photon with maximum topological charge also given by ⎣(n–1)/2⎦.  [There is, in addition, a non-
degenerate state of circular symmetry, forbidding optical vortex emission.]  As these degenerate states are all separate in 
energy, they could in principle be selectively excited – and so, through their decay, produce any of the allowed optical 
vortex modes.  With suitable attention to a convenient pump mechanism, it might be supposed that large numbers of 
phase-matched nanoarray units (for example, stacked within the cavities of a porous silicate) might indeed provide the 
basis for an optical vortex laser.  
 

 
7.  CONCLUSION  

 
The concepts and phenomena associated with spin and orbital angular momentum, in atoms and molecules and in light, 
provide a rich area of science – and one in which a stream of new discoveries is coming to the fore.  Some of the most 
interesting are phenomena in which interactions within these areas are associated with chirality, both in its 
manifestations and measurements.  Against the backdrop of well-established techniques such as circular dichroism, for 
example, there are now reports of films of chiral molecules selectively transmitting electrons with a certain spin, and so 
acting as a spin filter for photoelectrons ejected from a gold surface [59].  As new methods for the production of optical 
vortex light continue to emerge, the scope for exploiting light with orbital angular momentum, in particular, appears 
likely to be a source of much further development in this field, offering scope for applications ranging from quantum 
informatics and nanoparticle manipulation through to nanolithography. 
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